## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "R>" ) library(causalQual) options(cli.num_colors = 1) set.seed(1986) ## ----------------------------------------------------------------------------- ## Generate synthetic data. n <- 2000 data <- generate_qualitative_data_soo(n, assignment = "observational", outcome_type = "ordered") Y <- data$Y D <- data$D X <- data$X ## ----------------------------------------------------------------------------- ## Estimation. fit <- causalQual_soo(Y, D, X, outcome_type = "ordered") summary(fit) ## ----------------------------------------------------------------------------- ## Generate synthetic data. n <- 2000 data <- generate_qualitative_data_iv(n, outcome_type = "ordered") Y <- data$Y D <- data$D Z <- data$Z ## ----------------------------------------------------------------------------- ## Estimation. fit <- causalQual_iv(Y, D, Z) summary(fit) ## ----------------------------------------------------------------------------- ## Generate synthetic data. n <- 2000 data <- generate_qualitative_data_rd(n, outcome_type = "ordered") Y <- data$Y running_variable <- data$running_variable cutoff <- data$cutoff ## ----------------------------------------------------------------------------- ## Estimation. fit <- causalQual_rd(Y, running_variable, cutoff) summary(fit) ## ----------------------------------------------------------------------------- n <- 2000 data <- generate_qualitative_data_did(n, assignment = "observational", outcome_type = "ordered") Y_pre <- data$Y_pre Y_post <- data$Y_post D <- data$D ## ----------------------------------------------------------------------------- fit <- causalQual_did(Y_pre, Y_post, D) summary(fit)