Package 'cbbinom'

September 2, 2024
Title Continuous Analog of a Beta-Binomial Distribution
Version 0.1.0
Description Implementation of the $d/p/q/r$ family of functions for a continuous analog to the standard discrete beta-binomial with continuous size parameter and continuous support with x in $[0, size + 1]$.
License MIT + file LICENSE
Suggests extraDistr, ggplot2, testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.2
LinkingTo Rcpp
Imports Rcpp
NeedsCompilation yes
Author Xiurui Zhu [aut, cre]
Maintainer Xiurui Zhu <zxr6@163.com></zxr6@163.com>
Repository CRAN
Date/Publication 2024-09-02 12:00:08 UTC
Contents
cbbinom
Index 7

2 cbbinom

cbbinom

The Continuous Beta-Binomial Distribution

Description

Density, distribution function, quantile function and random generation for a continuous analog to the beta-binomial distribution with parameters size alpha and beta. The usage and help pages are modeled on the d-p-q-r families of functions for the commonly-used distributions in the stats package.

Usage

```
dcbbinom(
  х,
  size,
  alpha = 1,
 beta = 1,
 ncp = 0,
  log = FALSE,
  tol = 1e-06,
 max_iter = 10000L
pcbbinom(
  q,
  size,
  alpha = 1,
 beta = 1,
  ncp = 0,
  lower.tail = TRUE,
  log.p = FALSE,
  tol = 1e-06,
 max_iter = 10000L
qcbbinom(
  size,
  alpha = 1,
 beta = 1,
  ncp = 0,
  lower.tail = TRUE,
  log.p = FALSE,
  p_{tol} = 1e-06,
  p_max_iter = 10000L,
  root_tol = 1e-06,
  root_max_iter = 10000L
```

cbbinom 3

```
rcbbinom(
    n,
    size,
    alpha = 1,
    beta = 1,
    ncp = 0,
    p_tol = 1e-06,
    p_max_iter = 10000L,
    root_tol = 1e-06,
    root_max_iter = 10000L)
```

Arguments

```
vector of quantiles.
x, q
size
                  number of trials (zero or more).
alpha, beta
                  non-negative parameters of the Beta distribution.
                  non-centrality parameter.
ncp
                  logical; if TRUE, probabilities p are given as log(p).
log, log.p
                  arguments passed on to gen_hypergeo.
tol, max_iter
                  logical; if TRUE (default), probabilities are P[X \le x], otherwise, P[X > x].
lower.tail
                  vector of probabilities.
p_tol, p_max_iter
                  same as tol, max_iter.
root_tol, root_max_iter
                  arguments passed on to uniroot.
                  number of observations. If length(n) > 1, the length is taken to be the number
n
                  required.
```

Details

Derived from the continuous binomial distribution (Ilienko 2013), the continuous beta-binomial distribution is defined as:

$$P(x|n,\alpha,\beta) = \int_0^1 \frac{B_{1-p}(n+1-x,x)}{B(n+1-x,x)} \frac{p^{\alpha-1}(1-p)^{\beta-1}}{B(\alpha,\beta)} dp,$$

where x is the quantile, n is the size, $B_p(a,b) = \int_0^p u^{a-1} (1-u)^{b-1} du$ is the incomplete beta function.

When simplified, the distribution becomes:

$$P(x|n,\alpha,\beta) = \frac{\Gamma(n+1)B(n+1-x+\beta,\alpha)}{\Gamma(x)\Gamma(n+2-x)B(\alpha,\beta)} {}_3F_2(a;b;z),$$

where ${}_3F_2(a;b;z)$ is generalized hypergeometric function, $a=\{1-x,n+1-x,n+1-x+\beta\},$ $b=\{n+2-x,n+1-x+\alpha+\beta\},$ z=1.

4 cbbinom

Heuristically speaking, this distribution spreads the standard probability mass at integer x to the interval [x, x+1] in a continuous manner. As a result, the distribution looks like a smoothed version of the standard, discrete beta-binomial but shifted slightly to the right. The support of the continuous beta-binomial is [0, size+1], and the mean is approximately size*alpha/(alpha+beta)+1/2.

Supplying ncp moves the support of beta-binomial to [ncp, size + 1 + ncp], e.g. for the continuous beta-binomial with non-shifted mean, use ncp = -0.5.

Value

dcbbinom gives the density, pcbbinom the distribution function, qcbbinom the quantile function, and rcbbinom generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

The length of the result is determined by n for rcbbinom, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

Numerical computation of the density function

For simplicity, the density function is computed numerically through differentiation. To achieve higher numerical resolution (given that $d \ln u/du > 1, 0 < u < 1$), it is computed as:

$$p(x|n,\alpha,\beta) = \frac{\partial P(x|n,\alpha,\beta)}{\partial x} = \frac{\partial \exp[\ln P(x|n,\alpha,\beta)]}{\partial x}$$

When simplified, it becomes:

$$p(x|n,\alpha,\beta) = \frac{\partial \exp[\ln P(x|n,\alpha,\beta)]}{\partial \ln P(x|n,\alpha,\beta)} \frac{\partial \ln P(x|n,\alpha,\beta)}{\partial x} = \frac{\partial \ln P(x|n,\alpha,\beta)}{\partial x} P(x|n,\alpha,\beta),$$

where the first term is computed numerically and the second term is the distribution function.

Note

Change log:

• 0.1.0 Xiurui Zhu - Initiate the function.

References

Ilienko, Andreii (2013). Continuous counterparts of Poisson and binomial distributions and their properties. Annales Univ. Sci. Budapest., Sect. Comp. 39: 137-147. http://ac.inf.elte.hu/Vol_039_2013/137_39.pdf

gen_hypergeo 5

Examples

```
# Density function
dcbbinom(x = 5, size = 10, alpha = 2, beta = 4)
# Distribution function
(test_val <- pcbbinom(q = 5, size = 10, alpha = 2, beta = 4))
# Quantile function
qcbbinom(p = test_val, size = 10, alpha = 2, beta = 4)
# Random generation
set.seed(1111L)
rcbbinom(n = 10L, size = 10, alpha = 2, beta = 4)</pre>
```

gen_hypergeo

Generalized hypergeometric function

Description

gen_hypergeo computes generalized hypergeometric function.

Usage

```
gen_hypergeo(U, L, x, tol, max_iter, check_mode, log)
```

Arguments

U, L Numeric vectors for upper and lower values.

x Numeric (1L) as common ratio.

tol Numeric (1L) as convergence tolerance.

max_iter Integer (1L) as iteration limit.

check_mode Logical (1L) indicating whether the mode of x should be checked for obvious

convergence failures.

log Logical (1L) indicating whether result is given as log(result).

Value

Result of computation. Warnings are issued if failing to converge.

Note

Change log:

• 0.1.0 Xiurui Zhu - Initiate the function.

Author(s)

Xiurui Zhu

6 gen_hypergeo

Examples

```
gen_hypergeo(U = c(1.1, 0.2, 0.3), L = c(10.1, 4 * pi), x = 1, max_iter = 10000L, tol = 1e-6, check_mode = TRUE, log = FALSE)
```

Index

```
cbbinom, 2
dcbbinom(cbbinom), 2
gen_hypergeo, 3, 5
generalized hypergeometric function, 3
pcbbinom(cbbinom), 2
qcbbinom(cbbinom), 2
rcbbinom(cbbinom), 2
uniroot, 3
```