## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup, echo = FALSE------------------------------------------------------
library(clarabel)

## -----------------------------------------------------------------------------
P <- Matrix::Matrix(2 * c(3, 0, 0, 2), nrow = 2, ncol = 2, sparse = TRUE)
P <- as(P, "symmetricMatrix")  # P needs to be a symmetric matrix
q <- c(-1, -4)
A <- Matrix::Matrix(c(1, 1, 0, -1, 0, -2, 0, 1, 0, -1), ncol = 2, sparse = TRUE)
b <- c(0, 1, 1, 1, 1)
cones <- list(z = 1L, l = 4L)  ## 1 equality and 4 inequalities, in order
s <- clarabel(A = A, b = b, q = q, P = P, cones = cones)
cat(sprintf("Solution status, description: = (%d, %s)\n",
            s$status, solver_status_descriptions()[s$status]))
cat(sprintf("Solution: (x1, x2) = (%f, %f)\n", s$x[1], s$x[2]))

## -----------------------------------------------------------------------------
P <- Matrix::Matrix(2 * c(0, 0, 0, 1), nrow = 2, ncol = 2, sparse = TRUE)
P <- as(P, "symmetricMatrix") # P needs to be a symmetric matrix
q <- c(0, 0)
A <- Matrix::Matrix(c(0, -2.0, 0, 0, 0, 1.0), nrow = 3, ncol = 2, sparse = TRUE)
b <- c(1, -2, -2)
cones <- list(q = 3L)
s <- clarabel(A = A, b = b, q = q, P = P, cones = cones)
cat(sprintf("Solution status, description: = (%d, %s)\n",
            s$status, solver_status_descriptions()[s$status]))
cat(sprintf("Solution (x1, x2) = (%f, %f)\n", s$x[1], s$x[2]))

## -----------------------------------------------------------------------------
#' Return an vectorization of symmetric matrix using the upper triangular part,
#' still in column order.
#' @param S a symmetric matrix
#' @return vector of values
vec <- function(S) {
  n <- nrow(S)
  sqrt2 <- sqrt(2.0)
  upper_tri <- upper.tri(S, diag = FALSE)
  S[upper_tri] <- S[upper_tri] * sqrt2
  S[upper.tri(S, diag = TRUE)]
}

#' Return the symmetric matrix from the [vec] vectorization
#' @param v a vector
#' @return a symmetric matrix
mat <- function(v) {
  n <- (sqrt(8 * length(v) + 1) - 1) / 2
  sqrt2 <- sqrt(2.0)
  S <- matrix(0, n, n)
  upper_tri <- upper.tri(S, diag = TRUE)
  S[upper_tri] <- v / sqrt2
  S <- S + t(S)
  diag(S) <- diag(S) / sqrt(2)
  S
}

## ----echo = TRUE--------------------------------------------------------------
q <- c(1, -1, 1) # objective: x_1 - x2 + x_3
A11 <- matrix(c(-7, -11, -11, 3), nrow = 2)
A12 <- matrix(c(7, -18, -18, 8), nrow = 2)
A13 <- matrix(c(-2, -8, -8, 1), nrow = 2)

A21 <- matrix(c(-21, -11, 0, -11, 10, 8, 0, 8, 5), nrow = 3)
A22 <- matrix(c(0, 10, 16, 10, -10, -10, 16, -10, 3), nrow = 3)
A23 <- matrix(c(-5, 2, -17, 2, -6, 8, -17, 8, 6), nrow = 3)

B1 <- matrix(c(33, -9, -9, 26), nrow = 2)
B2 <- matrix(c(14, 9, 40, 9, 91, 10, 40, 10, 15), nrow = 3)

A <- rbind(
  cbind(vec(A11), vec(A12), vec(A13)), # first psd constraint
  cbind(vec(A21), vec(A22), vec(A23))  # second psd constraint
)
b <- c(vec(B1), vec(B2)) # stack both psd constraints
cones <- list(s = c(2, 3)) # cone dimensions
s <- clarabel(A = A, b = b, q = q, cones = cones)
cat(sprintf("Solution status, description: = (%d, %s)\n",
            s$status, solver_status_descriptions()[s$status]))
cat(sprintf("Solution (x1, x2, x3) = (%f, %f, %f)\n", s$x[1], s$x[2], s$x[3]))

## ----echo = FALSE-------------------------------------------------------------
parameter_df <- data.frame(
  Parameter = c("z", "l", "q", "s", "ep", "p", "gp"),
  Type = c("integer", "integer", "integer", "integer", "integer", "numeric", "list"),
  Length = c("1", "1", ">= 1", ">= 1", "1", ">= 1", ">= 1"),
  Description = c(
    "Number of primal zero cones (dual free cones), which corresponds to the primal equality constraints",
    "Number of linear cones (non-negative cones)",
    "Vector of second-order cone sizes",
    "Vector of positive semidefinite cone sizes",
    "Number of primal exponential cones",
    "Vector of primal power cone parameters",
    "List of named lists of two items, `a` : the numeric vector of at least 2 exponent terms, and `n` : an integer dimension of generalized power cone parameters"
  ),
  Definition = c("$\\{ 0 \\}^{z}$",
                 "$\\{ x \\in \\mathbb{R}^{l} : x_i \\ge 0, \\forall i=1,\\dots,l \\}$",
                 "$\\{ (t,x) \\in \\mathbb{R}^{q}  :  \\lVert x\\rVert_2  \\leq t \\}$",
                 "Upper triangular part of the positive semidefinite cone $S^s_+$. The elements $x$ of this cone represent the columnwise stacking of the upper triangular part of a positive semidefinite matrix $X \\in S^s_+$, so that $x \\in R^d$ with $d = s(s+1)/2$",
  "$\\{(x, y, z) : y > 0,~~ ye^{x/y} \\le z \\}$",
  "$\\{(x, y, z) : x^p y^{(1-p)} \\ge  \\lVert z\\rVert,~ (x,y) \\ge 0 \\}$ with $p \\in (0,1)$",
  "$\\{(x, y) \\in R^{len(a)} \\times R^n : \\prod\\limits_{a_i \\in a} x_i^{a_i} \\ge \\lVert y\\rVert_2,~ x \\ge 0 \\}$ with $a_i \\in (0,1)$ and $\\sum a_i = 1$"
  )
)
names(parameter_df)[5] <- "Definition (per parameter element)"
knitr::kable(parameter_df)

## -----------------------------------------------------------------------------
P <- Matrix::Matrix(2 * c(0, 0, 0, 1), nrow = 2, ncol = 2, sparse = TRUE)
P <- as(P, "symmetricMatrix") # P needs to be a symmetric matrix
q <- c(0, 0)
A <- Matrix::Matrix(c(0, -2.0, 0, 0, 0, 1.0), nrow = 3, ncol = 2, sparse = TRUE)
b <- c(1, -2, -2)
cones <- list(q = 3L)
s <- clarabel(A = A, b = b, q = q, P = P, cones = cones,
              control = list(max_iter = 3)) ## Reduced number of iterations
cat(sprintf("Solution status, description: = (%d, %s)\n",
            s$status, solver_status_descriptions()[s$status]))
cat(sprintf("Solution (x1, x2) = (%f, %f)\n", s$x[1], s$x[2]))