% emulation.rnw
% Time-stamp: "emulation.rnw"

\documentclass[11pt]{article}

% Set margins to be narrow
\RequirePackage[left=1in,top=0.75in,right=1in,bottom=0.75in]{geometry}


%\VignetteIndexEntry{Emulation of one Camera by another Camera}
%\VignetteEngine{knitr::knitr}

\RequirePackage{color}


\RequirePackage{fancyvrb}
\RequirePackage[T1]{fontenc}
\RequirePackage{ae}       % ComputerModern Fonts
\RequirePackage{fancyhdr}
\RequirePackage{float}
\RequirePackage{hyperref}
\usepackage{lastpage}


% block of definecolor's moved down here on Dec 17 2021.  Kurt Hornik
\definecolor{darkblue}{rgb}{0,0,0.5}
\definecolor{blue}{rgb}{0,0,0.8}
\definecolor{lightblue}{rgb}{0.2,0.2,0.9}
\definecolor{darkred}{rgb}{0.6,0.0,0.0}
\definecolor{red}{rgb}{0.7,0,0}
\definecolor{darkgreen}{rgb}{0.0,0.4,0.0}
\definecolor{lightgray}{rgb}{0.7,0.7,0.7}
\definecolor{darkorange}{rgb}{0.75, 0.45, 0}
\definecolor{purple}{rgb}{0.65, 0, 0.75}
\definecolor{goldenrod}{rgb}{0.80, 0.61, 0.11}
\definecolor{lightyellow}{rgb}{0.98,0.94,0.83}




\pagestyle{fancy}
\cfoot{page \thepage\ of \pageref{LastPage}}
\renewcommand{\headrulewidth}{0pt}

% \code mini environment ttfamily->texttt
\newcommand\code{\bgroup\@codex}
\def\@codex#1{{\color{darkred} \normalfont\ttfamily\hyphenchar\font=-1 #1}\egroup}

% This environment defines the look of R ouput
\DefineVerbatimEnvironment{Soutput}{Verbatim}{
  fontsize=\small,
  formatcom=\color{darkblue}
}

\begin{document}
% \SweaveOpts{concordance=TRUE}

\title{ {\Huge Emulation of one Camera by another Camera} }
\author{Glenn Davis  \url{    <gdavis@gluonics.com>}}
\maketitle
% \thispagestyle{fancy}

% Setup stuff.
<<setup, echo=FALSE, results="hide">>=
require("knitr",quietly=TRUE)
opts_chunk$set(fig.path="figs/ag2-", fig.align="center",
  fig.width=7, fig.height=7, comment="")
knit_hooks$set(output = function(x, options) {
  paste('\\begin{Soutput}\n', x, '\\end{Soutput}\n', sep = '')
})
options(width=90)
par( omi=c(0,0,0,0), mai=c(0.2,0.2,0.2,0.2) )
if(!file.exists("figs")) dir.create("figs")
@

\setcounter{figure}{0}  

% ----------------------------------------------------------------------------
\section*{Introduction}

The goal of this package \textbf{colorSpec} vignette is to reproduce
the findings of \cite{Lyon2002} and \cite{Quality2007},
where a camera with Foveon X3 sensor is modified to closely emulate
the spectral responses of the human eye.
The two modifications are:
\begin{itemize}
\item a prefilter in front of the camera; this modification is optical and classical, see \cite{Bretl2008}
\item a 3x3 matrix applied to the camera output; this modification is in hardware or in software
\end{itemize}

The figures below are best viewed on a display calibrated for sRGB.
Featured functions in this vignette are: \code{emulate()}.

<<packs, echo=TRUE, message=FALSE>>=
library( colorSpec )
library( spacesRGB )    # for function plotPatchesRGB()
@



% ----------------------------------------------------------------------------

\section{BT.709.RGB and Foveon X3}

The camera \code{BT.709.RGB} is not real; it is a theoretical
camera whose spectral responses are linear combinations of the responses
of the human eye (the \emph{standard observer}).
See the man page of \code{BT.709.RGB} for details.
Create a fixed wavelength vector,
and resample both the Foveon camera,
and the reference (the ideal) camera to the same wavelengths.
Calibrate and plot both cameras.
<<cameras, echo=TRUE, message=FALSE, fig.height=3.9, out.width='1.0\\linewidth', fig.cap='Reference camera BT.709.RGB (solid)  vs  Foveon X3 camera (dashed)'>>=
wave = 380:720
# read the Macbeth ColorCheck target
path = system.file( 'extdata/cameras/FoveonX3.txt', package='colorSpec') 
foveon = radiometric( readSpectra( path, wave=wave ) )
reference = resample( BT.709.RGB, wave=wave )
# calibrate so that both have the same response RGB=(1,1,1) to Illuminant E
illum = illuminantE(wave=wave)
foveon = calibrate( foveon, stimulus=illum )
reference = calibrate( reference, stimulus=illum )
# plot both for comparison
par( omi=c(0,0,0,0), mai=c(0.5,0.9,0.1,0) )
plot( reference, main='' )
plot( foveon, lty=2, add=TRUE, legend=FALSE, color=c('red','green','blue') )
@
See Figure 1.
These spectral responses are obviously quite different;
although the area under all 6 curves is 1.
To visualize the difference we will use the ever-popular
\emph{ColorChecker} target.
The data for this target has been kindly provided in CGATS format
by \cite{Pascale}.
\emph{ColorChecker} is a Registered Trademark of X-Rite,
and X-Rite is a Trademark. 

<<target, echo=TRUE, message=FALSE>>=
# read the Macbeth ColorCheck target
path = system.file( 'extdata/targets/CC_Avg30_spectrum_CGATS.txt', package='colorSpec') 
MacbethCC = readSpectra( path, wave=wave )  # MacbethCC is a 'colorSpec' object
MacbethCC = MacbethCC[ order(MacbethCC$SAMPLE_ID), ]  # still class 'colorSpec'
print( extradata(MacbethCC), row.names=F )
@

Note that \code{MacbethCC} is organized as \code{'df.row'} and contains extra data for each spectrum,
most importantly the coordinates of the patch rectangles.

Calculate the RGB responses to both cameras and display them.
<<lee11, echo=TRUE, fig.pos="H", fig.height=5, out.width='1.0\\linewidth', fig.cap='Rendering with Illuminant E, with Foveon RGB in bottom right half' >>=
RGB.ref = product( illum, MacbethCC, reference) # this is *linear scene* sRGB
# add the rectangle data to RGB.ref, so the patches are plotted in proper places
df.ref = extradata(MacbethCC)
df.ref$RGB.ref = RGB.ref
#  display in proper location, and use the sRGB display transfer function
par( omi=c(0,0,0,0), mai=c(0,0,0,0) )
plotPatchesRGB( df.ref, space='sRGB', which='scene', back='gray20', labels=FALSE )
# repeat with foveon camera, and add to existing plot
RGB.foveon = product( illum, MacbethCC, foveon )
df.foveon = extradata(MacbethCC)
df.foveon$RGB.foveon = RGB.foveon
plotPatchesRGB( df.foveon, space='sRGB', which='scene', shape='bottomright', add=T )
@
There is only agreement for the neutral patches,
as might be expected.

Now modify the Foveon camera, using both a pre-filter
and a matrix, to emulate the reference.
<<lee12, echo=TRUE, fig.pos="H", fig.height=4, out.width='1.0\\linewidth', fig.cap='Reference camera (solid)  vs  the modified Foveon camera (dashed)' >>=
foveon.mod = emulate( foveon, reference, filter=TRUE, matrix=TRUE ) 
par( omi=c(0,0,0,0), mai=c(0.5,0.9,0.2,0) )
plot( reference, main='' )
plot( foveon.mod, lty=2, add=TRUE, legend=FALSE )
@
The agreement is now much better.
Replot the ColorChecker to visualize the improvement.
<<lee15, echo=TRUE, fig.pos="H", fig.height=5, out.width='1.0\\linewidth', fig.cap='Rendering with Illuminant E, with modified Foveon RGB in bottom right half' >>=
par( omi=c(0,0,0,0), mai=c(0,0,0,0) )
plotPatchesRGB( df.ref, space='sRGB', which='scene', back='gray20', labels=FALSE )
# repeat with modified foveon camera, and add to existing plot
df.foveon.mod = extradata(MacbethCC)
df.foveon.mod$RGB.foveon.mod  = product( illum, MacbethCC, foveon.mod )
plotPatchesRGB( df.foveon.mod, space='sRGB', which='scene', shape='bottomright', add=T )
@

The agreement in the RGBs is now much bettter, c.f. Figure 2.
There is a noticeable difference in the \textbf{Red} and \textbf{Magenta} patches, and minor differences in some others.
However, the neutrals are now worse; the green is low so they have
a purple tint.
A new feature - \emph{white-point preservation} - might be added to
a future version of \code{emulate()},
using the techniques in \cite{Finlayson97}.
Alternatively, one could also re-calibrate (white-balance) \code{foveon.mod}.

The computed pre-filter and matrix are attached to \code{foveon.mod},
and are easy to print and plot.
<<lee16, echo=TRUE, fig.pos="H", fig.height=3.5, out.width='1.0\\linewidth', fig.cap='Prefilter for the modified Foveon camera' >>=
attr(foveon.mod,"emulate")$A
par( omi=c(0,0,0,0), mai=c(0.5,0.9,0.2,0) )
prefilter = attr(foveon.mod,"emulate")$filter
specnames(prefilter) = "prefilter for modified Foveon"
plot( prefilter,  main='', ylim=c(0,1.1) )
@
This curve is broadly similar to those in \cite{Lyon2002} and \cite{Quality2007}.
All are bimodal and have a valley near 500nm.
But the peaks are in different locations, shaped differently,
and both of their peaks have a maximum of 1.
I suspect that they are different because of different optimization criteria.
The function \code{emulate()} uses a simple least-squares criterion with the
same weight at every wavelength.
\cite{Lyon2002} uses a "Metamerism Index" defined in \cite{ISO17321}.
This index uses color targets which \emph{might}
be the same as those in the \emph{ColorChecker}.
\cite{Quality2007} uses a criterion based on principal angles between subspaces.
These optional criteria might be added to \code{emulate()} in the future.
For a good comparison of the other 2 prefilters,
see Figure 6 in \cite{Quality2007}.

A real engineering implementation of these modifications would have
to include a noise and sensitivity analysis.
We will not pursue that here, except to observe the condition number
of the matrix.
<<lee17, echo=TRUE, message=FALSE>>=
A = attr(foveon.mod,"emulate")$A   # A is the 3x3 matrix already printed above
kappa( A, exact=TRUE, norm='2' )   # kappa() returns the condition number of A
@
This is quite large so that is not a good sign.


\bigskip
% ----------------------------------------------------------------------------

\section{Red Epic Dragon and Plumbicon}

The plumbicon, introduced in 1965, is a graylevel television camera tube.
The Red Epic Dragon, announced in 2013,
is a modern high-speed cinema RGB camera with 19.4 Megapixel CMOS sensor.
We will find a good linear combination of the RGB responsivities of the Dragon
to emulate the graylevel responsivity of the plumbicon.

Create a fixed wavelength vector,
and resample both cameras to the same wavelengths.
Then calibrate and plot both cameras. 
<<cameras2, echo=TRUE, message=FALSE, fig.height=3.9, out.width='1.0\\linewidth', fig.cap='plumbicon  (solid)  vs  Dragon (dashed)'>>=
wave = 400:700
# read the 2 cameras
path = system.file( 'extdata/cameras/Plumbicon30mm.txt', package='colorSpec') 
plumbicon =  readSpectra( path, wave=wave )
path = system.file( 'extdata/cameras/Red-Epic-Dragon.txt', package='colorSpec') 
dragon = readSpectra( path, wave=wave )
# calibrate to normalize the response to Illuminant E
illum = illuminantE(wave=wave)
plumbicon = calibrate( plumbicon, stimulus=illum )
dragon = calibrate( dragon, stimulus=illum )
# plot both for comparison
par( omi=c(0,0,0,0), mai=c(0.5,0.9,0.1,0) )
plot( dragon, main='', lty=2, legend=FALSE )
plot( plumbicon, col='black', lty=1, add=TRUE, legend='topleft'  )
@

The integral of all 4 curves is 1.
Now matrix the Dragon camera to emulate the plumbicon.
A filter is not used here, since the plumbicon has only one
output channel, the problem is underdetermined
and we could get an *exact* match with a filter.
<<lee22, echo=TRUE, fig.pos="H", fig.height=3.9, out.width='1.0\\linewidth', fig.cap='Plumbicon camera (solid)  vs  the modified Dragon camera (dashed)' >>=
dragon.mod = emulate( dragon, plumbicon, filter=FALSE, matrix=TRUE ) 
specnames( dragon.mod ) = "Dragon, matrixed"
combo = bind( plumbicon, dragon.mod )
par( omi=c(0,0,0,0), mai=c(0.5,0.9,0.2,0) )
plot( combo, main='', lty=c(1,2), col='black' )
@
The match on the interval [400,500] is not good.
The RGB weights are attached to \code{dragon.mod} and easy to display.
Note that the red weight is small.
<<weights, echo=TRUE, message=FALSE>>=
t( attr(dragon.mod,"emulate")$A )
@
Calculate the \emph{ColorChecker} graylevel responses
from both cameras and display them.
<<lee31, echo=TRUE, fig.pos="H", fig.height=5, out.width='1.0\\linewidth', fig.cap='Rendering with Illuminant E, with matrixed Dragon in bottom right half' >>=
MacbethCC = resample(MacbethCC,wave=wave)
graylevel = product( illum, MacbethCC, plumbicon)
RGB.plumbicon = matrix( graylevel, length(graylevel), 3 )
df.plumbicon = extradata(MacbethCC)
df.plumbicon$RGB = RGB.plumbicon
par( omi=c(0,0,0,0), mai=c(0,0,0,0) )
plotPatchesRGB( df.plumbicon, space='sRGB', which='scene', back='black' )
# repeat with dragon.mod camera, and add to existing plot, as triangles
graylevel = product( illum, MacbethCC, dragon.mod)
df.dragon = extradata(MacbethCC)
df.dragon$RGB = matrix( graylevel, length(graylevel), 3 )
plotPatchesRGB( df.dragon, space='sRGB', which='scene', add=T, shape='bottomright' )
@
Despite the mismatch on the interval [400,500],
the visual agreement is pretty good.


% \pagebreak

% \bibliographystyle{apalike}
% \bibliographystyle{alpha}
\bibliographystyle{ieeetr}
\bibliography{bibliography}


% ----------------------------------------------------------------------------


\section*{Appendix}
This document was prepared \today,  with the following configuration:
<<finish, echo=FALSE, results="asis">>=
knit_hooks$set(output = function(x, options) { x })
toLatex(sessionInfo(), locale=FALSE)
@


\end{document}