## ----setup,include=FALSE------------------------------------------------------ knitr::opts_chunk$set(echo=TRUE,eval=FALSE) #setwd("~/Desktop/cornet") #devtools::install_github("rauschenberger/cornet") ## ----abstract----------------------------------------------------------------- # grDevices::pdf("manuscript/figure_idea.pdf",width=5,height=2.5) # # box <- function(x,y,width=0.22,height=0.2,labels="",cex=1,col="black",...){ # xs <- x + 0.5*c(-1,-1,1,1)*width # ys <- y + 0.5*c(-1,1,1,-1)*height # graphics::polygon(x=xs,y=ys,border=col,lwd=2,...) # graphics::text(x=x,y=y,labels=labels,col=col,cex=cex) # } # # graphics::par(mar=c(0,0,0,0)) # graphics::plot.new() # graphics::plot.window(xlim=c(0,1),ylim=c(0,1)) # # v <- h <- 0.1 # # box(x=0+h,y=0.5,labels="outcomes,\nfeatures") # box(x=0.5,y=1-v,labels="initial binary\nclassification",col="red") # box(x=0.5,y=0+v,labels="numerical\nprediction",col="blue") # box(x=1-h,y=0.5,labels="final binary\nclassification",col="red") # # d <- 0.02 # graphics::arrows(x0=0.2+d,y0=0.5+c(-d,d),x1=0.4-d,y1=c(v,1-v),lwd=2,col=c("blue","red")) # graphics::arrows(x0=0.6+d,y0=c(v,1-v),x1=0.8-d,y1=0.5+c(-d,d),lwd=2,col=c("blue","red")) # # graphics::text(x=0.4,y=0.55,labels="binary outcome:\nlogistic regression",col="red",cex=0.7,pos=3) # graphics::text(x=0.4,y=0.45,labels="numerical outcome:\nlinear regression",col="blue",cex=0.7,pos=1) # graphics::text(x=0.63,y=0.5,labels="combine\npredicted\nprobabilities",col="darkgrey",cex=0.7) # graphics::text(x=0.8,y=0.3,labels="transform\npredicted values to\npredicted probabilities",col="darkgrey",cex=0.7,pos=1) # # grDevices::dev.off() ## ----examples----------------------------------------------------------------- # loss <- list() # for(i in seq_len(4)){ # loss[[i]] <- list() # cat("mode:",i,"\n") # for(j in seq_len(100)){ # set.seed(j) # cat("iteration:",j,"\n") # n0 <- 100; n1 <- 10000; p <- 500 # n <- n0 + n1 # X <- matrix(data=stats::rnorm(n*p),nrow=n,ncol=p) # beta <- stats::rbinom(n=p,size=1,prob=0.05)*stats::rnorm(n=p) # eta <- X %*% beta # epsilon <- stats::rnorm(n=n) # if(i==1){ # y <- eta + epsilon # } else if(i==2){ # y <- ifelse(eta<0,-2,+2)+epsilon # table(y>=0,eta>=0) # } else if(i==3){ # y <- ifelse(eta<0,-sqrt(abs(eta+epsilon)),(eta+epsilon)^2) # } else if(i==4){ # y <- eta + epsilon + stats::rbinom(n=n,size=1,prob=0.05)*(2*stats::rbinom(n=n,size=1,prob=0.5)-1)*1.5*max(abs(eta)) # } # foldid <- rep(c(0,1),times=c(n0,n1)) # loss[[i]][[j]] <- cornet::cv.cornet(y=y,cutoff=0,X=X,foldid.ext=foldid) # } # } # # save(loss,file="results/simulation.RData") # writeLines(text=capture.output(utils::sessionInfo(),cat("\n"), # sessioninfo::session_info()),con="results/info_sim.txt") ## ----examples_figure---------------------------------------------------------- # load("results/simulation.RData") # # grDevices::pdf("manuscript/figure_EXA.pdf",width=5,height=5) # # graphics::par(mfrow=c(2,2),mar=c(2,2,1,1)) # pos <- c(binomial=1,combined=2,gaussian=3) # col <- c(binomial="red",combined="grey",gaussian="blue") # cex <- 0.7 # names <- c("binomial","combined","gaussian") # for(i in seq_len(4)){ # frame <- as.data.frame(t(sapply(loss[[i]],function(x) x$deviance))) # graphics::boxplot(x=frame[,names],at=pos[names],col=col[names],cex.axis=cex,main=paste0("example ",i),cex.main=cex,axes=FALSE) # graphics::box() # graphics::axis(side=1,at=pos[names],labels=names,cex.axis=cex,tick=FALSE,line=-1) # graphics::axis(side=2,cex.axis=cex) # for(j in c("binomial","combined","gaussian")){ # mean <- mean(frame[[j]]) # graphics::points(x=pos[j],y=mean,pch=21,col="white",bg="black") # if(j=="combined"){next} # pvalue <- stats::wilcox.test(x=frame$combined,y=frame[[j]],alternative="less")$p.value # signif <- ifelse(pvalue<=0.05/8,"*","") # graphics::text(x=mean(c(pos["combined"],pos[[j]])),y=min(frame),labels=paste0("p=",format(pvalue,digits=2,scientific=TRUE),signif),pos=3,cex=0.7) # } # } # # grDevices::dev.off() ## ----analysis,eval=FALSE------------------------------------------------------ # iter <- 1000 # set.seed(1) # frame <- data.frame(cor=runif(n=iter,min=0,max=0.9), # n=round(runif(n=iter,min=100,max=200))+10000, # prob=runif(n=iter,min=0.01,max=0.1), # sd=runif(n=iter,min=1,max=2), # exp=runif(n=iter,min=0.1,max=2), # frac=runif(n=iter,min=0.5,max=0.9)) # # ridge <- lasso <- list() # pb <- utils::txtProgressBar(min=0,max=nrow(frame),width=20,style=3) # for(i in seq_len(nrow(frame))){ # utils::setTxtProgressBar(pb=pb,value=i) # set.seed(i) # data <- do.call(what=cornet:::.simulate,args=cbind(frame[i,],p=500)) # foldid <- rep(c(0,1),times=c(frame$n[i],10000)) # set.seed(i) # ridge[[i]] <- do.call(what=cornet:::cv.cornet,args=c(data,alpha=0,foldid=foldid)) # set.seed(i) # lasso[[i]] <- do.call(what=cornet:::cv.cornet,args=c(data,alpha=1,foldid=foldid)) # } # names(lasso) <- names(ridge) <- paste0("set",seq_len(nrow(frame))) # save(lasso,ridge,frame,file="results/simulation.RData") # # writeLines(text=capture.output(utils::sessionInfo(),cat("\n"), # sessioninfo::session_info()),con="results/info_sim.txt") ## ----figure_BOX,eval=FALSE---------------------------------------------------- # #--- boxplot of different metrics --- # load("results/simulation.RData",verbose=TRUE) # # fuse0 <- fuse1 <- list() # for(i in c("deviance","class","mse","mae","auc")){ # fuse0[[i]] <- sapply(ridge,function(x) (x[[i]]["combined"]-x[[i]]["binomial"])) # fuse1[[i]] <- sapply(lasso,function(x) (x[[i]]["combined"]-x[[i]]["binomial"])) # } # # grDevices::pdf("manuscript/figure_BOX.pdf",width=6,height=4) # graphics::par(mar=c(1.9,1.9,0.1,0.1)) # graphics::plot.new() # ylim <- range(unlist(fuse0),unlist(fuse1)) # at <- seq(from=1,to=9,by=2) # graphics::plot.window(xlim=c(min(at)-0.6,max(at)+0.6),ylim=ylim) # graphics::axis(side=2) # graphics::abline(h=0,col="grey",lty=2) # graphics::abline(v=at+1,col="grey",lty=2) # graphics::box() # graphics::boxplot(fuse1,at=at-0.5,add=TRUE,axes=FALSE,col="white",border="black") # graphics::boxplot(fuse0,at=at+0.5,add=TRUE,axes=FALSE,col="white",border="darkgrey") # labels <- names(fuse1) # labels <- ifelse(labels=="class","mcr",labels) # labels <- ifelse(labels %in% c("mcr","mse","mae","auc"),toupper(labels),labels) # for(i in seq_along(labels)){ # graphics::axis(side=1,at=at[i],labels=bquote(Delta ~ .(labels[i]))) # } # grDevices::dev.off() # # # decrease # sapply(fuse1,function(x) mean(x<0)) # lasso # sapply(fuse0,function(x) mean(x<0)) # ridge # # # constant # sapply(fuse1,function(x) mean(x==0)) # lasso # sapply(fuse0,function(x) mean(x==0)) # ridge # # # increase # sapply(fuse1,function(x) mean(x>0)) # lasso # sapply(fuse0,function(x) mean(x>0)) # ridge ## ----figure_TAB,eval=FALSE---------------------------------------------------- # #--- plot of percentage changes --- # load("results/simulation.RData",verbose=TRUE) # # loss <- list() # loss$ridge <- as.data.frame(t(sapply(ridge,function(x) x$deviance))) # loss$lasso <- as.data.frame(t(sapply(lasso,function(x) x$deviance))) # # data <- list() # for(i in c("ridge","lasso")){ # data[[i]] <- data.frame(row.names=rownames(frame)) # data[[i]]$"(1)" <- 100*(loss[[i]]$binomial-loss[[i]]$intercept)/loss[[i]]$intercept # data[[i]]$"(2)" <- 100*(loss[[i]]$combined-loss[[i]]$intercept)/loss[[i]]$intercept # data[[i]]$"(3)" <- 100*(loss[[i]]$combined-loss[[i]]$binomial)/loss[[i]]$binomial # } # # row <- colnames(data$lasso) # col <- colnames(frame) # txt <- expression(rho,n,s,sigma,t,q) # # for(k in c("ridge","lasso")){ # grDevices::pdf(paste0("manuscript/figure_",k,".pdf"),width=6.5,height=4) # graphics::par(mfrow=c(length(row),length(col)), # mar=c(0.2,0.2,0.2,0.2),oma=c(4,4,0,0)) # for(i in seq_along(row)){ # for(j in seq_along(col)){ # y <- data[[k]][[row[i]]] # x <- frame[[col[j]]] # graphics::plot.new() # graphics::plot.window(xlim=range(x),ylim=range(y),xaxs="i") # graphics::box() # graphics::abline(h=0,lty=1,col="grey") # graphics::points(y=y,x=x,cex=0.5,pch=16,col=ifelse(y>0,"black","grey")) # line <- stats::loess.smooth(y=y,x=x,evaluation=200) # graphics::lines(x=line$x,y=line$y,col="black",lty=2,lwd=1) # if(j==1){ # graphics::mtext(text=row[i],side=2,line=2.5,las=2) # graphics::axis(side=2) # } # if(i==length(row)){ # graphics::mtext(text=txt[j],side=1,line=2.5) # graphics::axis(side=1) # } # } # } # grDevices::dev.off() # } # # cbind(col,as.character(txt)) # verify