## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = TRUE, warning = FALSE ) options(knitr.kable.NA = ".") ## ----setup, message = FALSE, echo = FALSE------------------------------------- library("crossnma") set.seed(1910) settings.meta(digits = 3) cilayout("(", " to ") ## ----------------------------------------------------------------------------- dim(ipddata) head(ipddata) ## ----------------------------------------------------------------------------- stddata ## ----------------------------------------------------------------------------- # JAGS model: code + data mod1 <- crossnma.model(treat, id, relapse, n, design, prt.data = ipddata, std.data = stddata, #---------- bias adjustment ---------- method.bias = "naive", #---------- assign a prior ---------- prior.tau.trt = "dunif(0, 3)", #---------- SUCRA ---------- sucra = TRUE, small.values = "desirable" ) ## ----fig.width=4.5, fig.height=5,fig.show='hold',fig.align='center'----------- netgraph(mod1, cex.points = n.trts, adj = 0.5, plastic = FALSE, number = TRUE, pos.number.of.studies = c(0.5, 0.4, 0.5, 0.5, 0.6, 0.5)) ## ----------------------------------------------------------------------------- # Run JAGS jagsfit1 <- crossnma(mod1, n.iter = 5000, n.burnin = 2000, thin = 1) jagsfit1 ## ----echo = FALSE------------------------------------------------------------- knitr::kable(summary(jagsfit1, backtransf = FALSE), digits = 3) ## ----------------------------------------------------------------------------- par(mar = rep(2, 4), mfrow = c(2, 3)) plot(jagsfit1) ## ----------------------------------------------------------------------------- # JAGS model: code + data mod2 <- crossnma.model(treat, id, relapse, n, design, prt.data = ipddata, std.data = stddata, #---------- bias adjustment ---------- method.bias = "naive", #---------- meta-regression ---------- cov1 = age, split.regcoef = FALSE ) ## ----------------------------------------------------------------------------- # Run JAGS jagsfit2 <- crossnma(mod2, n.iter = 5000, n.burnin = 2000, thin = 1) ## ----echo = FALSE------------------------------------------------------------- knitr::kable(summary(jagsfit2, backtransf = FALSE), digits = 3) ## ----fig.width=6, fig.height=5,fig.show='hold',fig.align='center'------------- league(jagsfit2, cov1.value = 38, digits = 2) ## ----fig.width=6, fig.height=5,fig.show='hold',fig.align='center'------------- league(jagsfit2, cov1.value = 38, digits = 2, direction = "long") ## ----------------------------------------------------------------------------- # JAGS model: code + data mod3 <- crossnma.model(treat, id, relapse, n, design, prt.data = ipddata, std.data = stddata, reference = "D", #---------- meta-regression ---------- cov1 = age, split.regcoef = FALSE, #---------- bias adjustment ---------- method.bias = "prior", run.nrs.trt.effect= "common", run.nrs.var.infl = 0.6, run.nrs.mean.shift = 0, run.nrs.n.iter = 10000, run.nrs.n.burnin = 4000, run.nrs.thin = 1, run.nrs.n.chains = 2 ) ## ----------------------------------------------------------------------------- # Run JAGS jagsfit3 <- crossnma(mod3, n.iter = 5000, n.burnin = 2000, thin = 1) ## ----fig.width=6, fig.height=5,fig.show='hold',fig.align='center'------------- heatplot(jagsfit3, cov1.value = 38, size = 6, size.trt = 20, size.axis = 12) ## ----------------------------------------------------------------------------- # JAGS model: code + data mod4 <- crossnma.model(treat, id, relapse, n, design, prt.data = ipddata, std.data = stddata, #---------- bias adjustment ---------- method.bias = "adjust1", bias.type = "add", bias.effect = "common", bias = rob, unfav = unfavored, bias.group = bias.group, bias.covariate = year ) ## ----------------------------------------------------------------------------- # Run JAGS jagsfit4 <- crossnma(mod4, n.iter = 5000, n.burnin = 2000, thin = 1) ## ----echo = FALSE------------------------------------------------------------- knitr::kable(summary(jagsfit4, backtransf = FALSE), digits = 3) ## ----------------------------------------------------------------------------- # JAGS model: code + data mod5 <- crossnma.model(treat, id, relapse, n, design, prt.data = ipddata, std.data = stddata, #---------- bias adjustment ---------- method.bias = "adjust2", bias.type = "add", bias = rob, unfav = unfavored, bias.group = bias.group ) ## ----------------------------------------------------------------------------- # Run JAGS jagsfit5 <- crossnma(mod5, n.iter = 5000, n.burnin = 2000, thin = 1) ## ----echo = FALSE------------------------------------------------------------- knitr::kable(summary(jagsfit5, backtransf = FALSE), digits = 3) ## ----echo = FALSE, message = FALSE-------------------------------------------- tools::compactPDF(path = ".", gs_quality = "ebook")