## ----eval=FALSE, warning=FALSE, message=FALSE---------------------------------
#  library(dowser)
#  
#  # load example AIRR tsv data
#  data(ExampleAirr)
#  
#  # Process example data using default settings
#  clones = formatClones(ExampleAirr, traits="timepoint", minseq=3)
#  
#  # Column shows timepoints in dataset
#  print(table(ExampleAirr$timepoint))
#  #0   7  14
#  #62 102 225
#  
#  # Calculate number of tissues sampled in tree
#  timepoints = unlist(lapply(clones$data, function(x)
#    length(unique(x@data$timepoint))))
#  
#  # Filter to multi-type trees
#  clones = clones[timepoints > 1,]
#  
#  # Build trees using maximum likelihood (can use alternative builds if desired)
#  trees = getTrees(clones, build="pml")
#  

## ----eval=FALSE, warning=FALSE, message=FALSE---------------------------------
#  
#  # correlation test with 10000 repetitions
#  test = correlationTest(trees, permutations=10000, time="timepoint")
#  print(test)
#  
#  # A tibble: 6 × 12
#  #  clone_id data       locus  seqs trees      slope     p corre…¹ random…²  min_p
#  #     <dbl> <list>     <chr> <int> <list>     <dbl> <dbl>   <dbl>    <dbl>  <dbl>
#  #1     3128 <airrClon> N        40 <phylo> -0.00205 0.859  -0.173 -0.0257  0.0667
#  #2     3184 <airrClon> N        12 <phylo>  0.00111 0.497   0.649 -0.00429 0.5
#  #3     3140 <airrClon> N         9 <phylo>  0.00156 0.335   0.630 -0.00835 0.333
#  #4     3192 <airrClon> N         9 <phylo>  0.00739 0.498   0.956 -0.00306 0.5
#  #5     3115 <airrClon> N         6 <phylo>  0.00159 0.244   0.565  0.00236 0.25
#  #6     3139 <airrClon> N         6 <phylo>  0.00308 0.507   0.821  0.0112  0.5
#  
#  
#  # use uniform correlaion test (more sensitive, but higher false positive rate)
#  utest = correlationTest(trees, permutations=10000, time="timepoint", perm_type="uniform")
#  print(utest)
#  
#  # A tibble: 6 × 12
#  #  clone_id data       locus  seqs trees      slope      p correlation random_c…¹
#  #     <dbl> <list>     <chr> <int> <list>     <dbl>  <dbl>       <dbl>      <dbl>
#  #1     3128 <airrClon> N        40 <phylo> -0.00205 0.856       -0.173   0.00146
#  #2     3184 <airrClon> N        12 <phylo>  0.00111 0.0768       0.649  -0.00223
#  #3     3140 <airrClon> N         9 <phylo>  0.00156 0.114        0.630   0.00205
#  #4     3192 <airrClon> N         9 <phylo>  0.00739 0.110        0.956   0.000223
#  #5     3115 <airrClon> N         6 <phylo>  0.00159 0.336        0.565   0.00409
#  #6     3139 <airrClon> N         6 <phylo>  0.00308 0.172        0.821   0.00431
#  
#  

## ----eval=FALSE, warning=FALSE, message=FALSE---------------------------------
#  library(ggtree)
#  
#  # order trees by p value
#  test = test[order(test$p),]
#  
#  # Plot times on tree with lowest p value (not convincingly evolving)
#  plotTrees(test)[[1]] +
#      geom_tippoint(aes(fill=timepoint), pch=21, size=2) +
#      scale_fill_distiller(palette="RdYlBu")

## ----eval=TRUE, echo=FALSE, warning=FALSE, message=FALSE----------------------
library(dowser)
data(TimeTrees)
TimeTrees = TimeTrees[order(TimeTrees$p),]
plotTrees(TimeTrees)[[1]] + 
    ggtree::geom_tippoint(aes(fill=timepoint), pch=21, size=2) +
    scale_fill_distiller(palette="RdYlBu")