## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # library(dsb) # library(MASS) # library(mclust) ## ----eval = FALSE------------------------------------------------------------- # # isotypes = c("MouseIgG1kappaisotype_PROT", "MouseIgG2akappaisotype_PROT", # "Mouse IgG2bkIsotype_PROT", "RatIgG2bkIsotype_PROT") # # norm.adt = ModelNegativeADTnorm( # cell_protein_matrix = cells_citeseq_mtx, # fast.km = TRUE, # denoise.counts = TRUE, # use.isotype.control = TRUE, # isotype.control.name.vec = isotypes # ) # ## ----eval = FALSE------------------------------------------------------------- # # norm.adt = DSBNormalizeProtein( # cell_protein_matrix = dsb::raw.adt.matrix, # empty_drop_matrix = dsb::empty_drop_citeseq_mtx, # fast.km = TRUE, # denoise.counts = TRUE, # use.isotype.control = TRUE, # isotype.control.name.vec = isotypes # ) # ## ----eval = FALSE------------------------------------------------------------- # r = "deepskyblue3" # library(dsb) # # # specify isotypes # isotypes.names = rownames(cells_citeseq_mtx)[67:70] # # norm = DSBNormalizeProtein( # # set fast.km = TRUE to run the fast method # fast.km = TRUE, # cell_protein_matrix = dsb::cells_citeseq_mtx, # empty_drop_matrix = dsb::empty_drop_citeseq_mtx, # denoise.counts = TRUE, # use.isotype.control = TRUE, # isotype.control.name.vec = rownames(cells_citeseq_mtx)[67:70], # ) # # # original method # norm.original = dsb::DSBNormalizeProtein( # cell_protein_matrix = dsb::cells_citeseq_mtx, # empty_drop_matrix = dsb::empty_drop_citeseq_mtx, # denoise.counts = TRUE, # use.isotype.control = TRUE, # isotype.control.name.vec = rownames(cells_citeseq_mtx)[67:70], # ) # # n.original = norm.original$dsb_normalized_matrix # n.fast = norm$dsb_normalized_matrix # # individual correlations # par(mfrow=c(1,2)) # plot(n.original['CD8_PROT', ], n.fast['CD8_PROT', ], # pch = 16, # font.main = 1, # col = adjustcolor(r, alpha.f = 0.2), # cex = 0.6, # xlab = "dsb original", # ylab = "dsb km.fast", # main = 'CD8 Normalized ADT' # ) # plot(n.original['CD4_PROT', ], n.fast['CD4_PROT', ], # pch = 16, font.main = 1, cex = 0.6, # col = adjustcolor(r, alpha.f = 0.2), # xlab = "dsb original", # ylab = "dsb km.fast", # main = 'CD4 Normalized ADT' # ) # ## ----eval = FALSE------------------------------------------------------------- # # correlations <- sapply(seq_len(nrow(n.original)), function(x){ # cor(n.original[x, ], n.fast[x, ], method = 'pearson') # }) # # # plot # hist(correlations, breaks = 20, xlim = c(0.97, 1), # main = "correlation per protein\n km.fast vs original method", # font.main = 1, # xlab = "Pearson correlation", freq = FALSE, col = "lightgray", border = "white") # rug(correlations) #