Package ‘{CWTr’

June 17, 2024
Type Package
Title Fast Continuous Wavelet Transform
Version 0.2.1
Maintainer Lukas Schneiderbauer <lukas.schneiderbauer@gmail.com>

Description Enables the usage of the fast continuous wavelet transform,
originally implemented in the 'C++' library fCWT' by Lukas Arts.
See Arts, P.A. and Van den Broek, E.L. (2022)
<doi:10.1038/s43588-021-00183-z> for details.
The package includes simple helpers such as a plotting function.

License GPL (>=3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Depends R (>=4.1)

Suggests ggplot2 (>=3.3.0), hms (>= 1.1.0), viridis (>= 0.6.0), rlang
(>= 1.0.0), testthat (>= 3.0.0)

LinkingTo cppll
SystemRequirements fftw (>= 3.3.0), openmp (>= 15.0.0)
Config/testthat/edition 3

URL https://1schneiderbauer.github.io/fCWTr/,
https://github.com/1lschneiderbauer/fCWTr

BugReports https://github.com/lschneiderbauer/fCWTr/issues
NeedsCompilation yes
Author Lukas Schneiderbauer [aut, cre, cph]
(<https://orcid.org/0000-0002-0975-6803>),
Lukas P. A. Arts [cph] (Author of the majority of the C++ code,
indicated in the respective header files.),
Egon L. van den Broek [cph] (Author of the majority of the C++ code,
indicated in the respective header files.)
Repository CRAN

Date/Publication 2024-06-17 16:10:05 UTC

https://doi.org/10.1038/s43588-021-00183-z
https://lschneiderbauer.github.io/fCWTr/
https://github.com/lschneiderbauer/fCWTr
https://github.com/lschneiderbauer/fCWTr/issues
https://orcid.org/0000-0002-0975-6803

2 as.data.frame.fcwtr_scalogram

Contents
as.data.frame.fcwtr_scalogram L. o 2
foWt . o e e e 3
fowt_batch e 4
plot.fewtr_scalogram L e 7
ts_sin_ 440 L 8
ES_SIM_SIM . . . v v e e e e e e e e e e e e e e e e 8
tS_SIN_SUPEIPOS . . . v v v e i i e e e e e e e e e e e e 8

Index 9

as.data.frame.fcwtr_scalogram
Coerce the scalogram matrix to a data frame

Description

Internally, the scalogram resulting from fcwt () is represented by a numeric matrix. This method
coerces this matrix into a reasonable data frame. Note that this conversion has a significant run time

cost.
Usage
S3 method for class 'fcwtr_scalogram'
as.data.frame(x, ...)
Arguments
X An object resulting from fcwt ().

additional arguments to be passed to or from methods.

Value

A data.frame() object representing the scalogram data with four columns:

time_ind An integer index uniquely identifying time slices.

time The time difference to the first time slice in physical units. The time unit is the inverse of the
frequency unit chosen by the user for the sample_freq argument of fcwt ().

freq The frequency in the same units as the sample_freq argument of fcwt().

value The fCWT result for the particular time-frequency combination.

fewt 3

Examples

fewt(
sin((1:5000) * 2 * pi * 440 / 44100),
sample_freq = 44100,

n_fregqs = 10
) 1>
as.data.frame() |>
head()
fewt Fast continuous wavelet transform
Description

The core function of this package making use of the fCWT library. It processes an input signal in
form of a real valued numeric vector interpreted as an evenly spaced time series and returns the
absolute values of a spectogram, i.e. a graph with a time and a frequency dimension.

Usage

fewt (
signal,
sample_freq,
n_fregs,
freq_begin = 2 * sample_freq/length(signal),
freg_end = sample_freq/2,
sigma = 1,
remove_coi = TRUE,
n_threads = 2L

)
Arguments

signal Real-valued time series. The time steps are assumed to be evenly spaced.

sample_freq Sampling rate of input time series. This number primarily establishes a connec-
tion to physical units which is used in other frequency definitions as well as the
units of the output data.

n_fregs Number of frequency bins generated by the CWT. The frequencies are linearly
distributed. Computation time increases when raising the number of frequency
bins.

freqg_begin, freg_end
Optionally specifies the frequency range [freq_end, freq_begin]. If not
specified the maximal meaningful frequency range, depending on the input sig-
nal, is taken. The range and sample_freq need to be specified in the same units.

4 fewt_batch

sigma Sets a dimensionless parameter modifying the wavelet spread which in the time-
domain is roughly given by ¥; ~ \/5% Changing this parameter adjusts the
time/frequency uncertainty balance. Defaults to 1. Larger (lower) value of sigma
corresponds to a better (worse) frequency resolution and a worse (better) time
resolution.

remove_coi Boundary effects can result in nonphysical artifacts. If remove_coi = TRUE,
those are effectively removed by setting corresponding values to NA. We de-
fine the essential support of the (Gaussian) wavelet to be four times its standard
deviation, 4%; = 2%/2 %, and so a wavelet touches the boundary if the distance
of the center of the wavelet to the boundary is less then 4%;. Values that fall into
that range are removed if remove_coi = TRUE.

n_threads Number of threads used by the computation, if supported by your platform.
Defaults to 2 threads (to accomodate CRAN requirements).

Details

The wavelet used in this calculation is the so called Morlet wavelet, a sinusoidal wave modulated
by a Gaussian whose spread is controlled by the argument sigma.

See the original paper Arts, L.P.A., van den Broek, E.L. The fast continuous wavelet transformation
(fCWT) for real-time, high-quality, noise-resistant time—frequency analysis. Nat Comput Sci 2,
47-58 (2022). doi:10.1038/s4358802100183z

Value

The spectogram, a numeric real-valued matrix with dimensions dim = c(length(signal), n_fregs).
This matrix is wrapped into a S3-class fcwtr_scalogram so that plotting and coercion functions
can be used conveniently.

Examples

ts_sin_440 <- sin((1:5000) x 2 * pi * 440 / 44100)

res <-
fewt(

ts_sin_440,
sample_freq = 44100,
freq_begin = 50,
freqg_end = 1000,
n_fregs = 10,
sigma = 5

fcwt_batch Fast continuous wavelet transform - Batch processing

https://doi.org/10.1038/s43588-021-00183-z

fewt_batch

Description

Performs a fast continuous wavelet transform on long sequences by sequentially processing junks
of the input signal and keeping only low-resolution output data to preserve memory. This is only
useful for very long signals whose output does not fit into memory as a whole. It should not be used
on short signals since boundary artefacts are discarded (and those potentially dominate for short

sequences).

Usage

fewt_batch(
signal,
sample_freq,
n_fregs,

time_resolution,
freq_begin = 2 x sample_freq/length(signal),
freg_end = sample_freq/2,

max_batch_size = ceiling(4 * 10%9/(n_fregs * 4)),

2L,

progress_bar = FALSE

sigma = 1,
n_threads =
)
Arguments
signal

sample_freq

n_freqgs

time_resolution

Real-valued time series. The time steps are assumed to be evenly spaced.

Sampling rate of input time series. This number primarily establishes a connec-
tion to physical units which is used in other frequency definitions as well as the
units of the output data.

Number of frequency bins generated by the CWT. The frequencies are linearly
distributed. Computation time increases when raising the number of frequency
bins.

The time resolution in inverse units of sample_freq of the result. Memory con-
sumption is directly related to that. Can not be higher than the time resolution
of the input signal.

freqg_begin, freg_end

sigma

max_batch_size

Optionally specifies the frequency range [freq_end, freq_begin]. If not
specified the maximal meaningful frequency range, depending on the input sig-
nal, is taken. The range and sample_freq need to be specified in the same units.

Sets a dimensionless parameter modifying the wavelet spread which in the time-
domain is roughly given by ¥; ~ /2 % Changing this parameter adjusts the
time/frequency uncertainty balance. Defaults to 1. Larger (lower) value of sigma
corresponds to a better (worse) frequency resolution and a worse (better) time
resolution.

The maximal batch size that is used for splitting up the input sequence. This
limits the maximal memory that is used. Defaults to roughly 4GB. The actual
batch size is optimized for use with FFTW.

6 fewt_batch

n_threads Number of threads used by the computation, if supported by your platform.
Defaults to 2 threads (to accomodate CRAN requirements).

progress_bar Monitoring progress can sometimes be useful when performing time consuming
operations. Setting progress_bar = TRUE enables printing a progress bar to the
console. Defaults to FALSE.

Details

In case of input sequences that exceed the a certain size, the output sequence will not fit into the
local memory and the fcwt cannot be performed in one run. For instance, in case of processing a
song of 10 minutes length (assuming a sampling rate of 44100 Hz), the size of the output vector is
10 * 60 seconds * 44100 Hz * nfreqs * 4 bytes, which for e.g. nfreqs = 200, equals ~ 21
GB, hence nowadays already at the limit of the hardware of a modern personal computer.

In cases where the required output time-resolution is smaller than the time resolution of the input
signal, one can perform the fcwt () and reduce the output size by averaging. (The input signal time
resolution can in general not be reduced since high-frequency information would get lost.)

This function splits up the input sequence into batches, processes each batch separately, reduces the
time resolution, and adds the outputs together.

Attention: Boundary artefacts are removed, so some high frequency information at the beginning
and the end of the sequence is lost. (The amount depends on the minimal frequency captured
min_freq.)

Value

The spectogram, a numeric real-valued matrix with dimensions roughly dim ~ c(length(signal)
* time_resolution * sample_freq, n_fregs). The exact length of the output depends on bound-
ary effect details. This matrix is wrapped into a S3-class fcwtr_scalogram so that plotting and
coercion functions can be used conveniently.

See Also
fewt ()

Examples

res <-
fewt_batch(

ts_sin_sin,
sample_freq = 44100,
freq_begin = 100,
freqg_end = 11000,
n_fregs = 10,
sigma = 10,
max_batch_size = 50000,
time_resolution = 0.001

plot.fewtr_scalogram 7

plot.fcwtr_scalogram Scalogram plotting

Description

Plots the scalogram resulting from fcwt (). Requires ggplot2.

Usage
S3 method for class 'fcwtr_scalogram'
plot(x, n = 1000, ...)
Arguments
X An object resulting from fcwt ().
n The plotting function reduces the time resolution by averaging to generate a rea-
sonable graphics format. n is the number of time steps that are plotted. Defaults
ton =1000.

other arguments passed to specific methods

Value

No return value, called for side effects.

Examples
ts_sin_440 <- sin((1:4410) * 2 * pi x 440 / 44100)

res <-
fewt(

ts_sin_440,
sample_freq = 44100,
freq_begin = 50,
freq_end = 1000,
n_fregs = 10,

sigma = 5

)

plot(res)

https://ggplot2.tidyverse.org/

ts_sin_superpos

ts_sin_440 Pure sine wave

Description

Assuming a sample rate of 44100 Hz, the sine wave’s frequency is 440 Hz.

Usage
ts_sin_440

Format

A numeric vector containing a time series signal.

ts_sin_sin A sinusoidal wave with varying frequency

Description

The frequency itself is changing in a sinusoidal fashion.

Usage

ts_sin_sin

Format

A numeric vector containing a time series signal.

ts_sin_superpos Superimposed sine waves of different frequencies and different ampli-

tudes

Description

Assuming a sample rate of 44100 Hz, the superimposed signals’ frequencies are 440 Hz, 880 Hz,

100 Hz, 500 Hz, 1200 Hz and 50 Hz.

Usage

ts_sin_superpos

Format

A numeric vector containing a time series signal.

Index

+ datasets
ts_sin_440, 8
ts_sin_sin, 8
ts_sin_superpos, 8

as.data.frame.fcwtr_scalogram, 2
data.frame(), 2

fewt, 3
fewt(), 2,6, 7
fcwt_batch, 4

plot.fcwtr_scalogram, 7

ts_sin_440, 8
ts_sin_sin, 8
ts_sin_superpos, 8

	as.data.frame.fcwtr_scalogram
	fcwt
	fcwt_batch
	plot.fcwtr_scalogram
	ts_sin_440
	ts_sin_sin
	ts_sin_superpos
	Index

