## ----setup, echo = FALSE, eval = FALSE---------------------------------------- # knitr::opts_chunk$set(comment = "#>", warning=FALSE, message=FALSE) # library(fastFMM) # output: pdf_document # # output: rmarkdown::html_vignette ## ----echo = FALSE------------------------------------------------------------- # Thanks to Yihui Xie for providing this code # # %\VignetteEngine{knitr::rmarkdown} # %\VignetteEngine{rmarkdown::render} library(knitr) hook_output <- knit_hooks$get("output") knit_hooks$set(output = function(x, options) { lines <- options$output.lines if (is.null(lines)) { return(hook_output(x, options)) # pass to default hook } x <- unlist(strsplit(x, "\n")) more <- "..." if (length(lines)==1) { # first n lines if (length(x) > lines) { # truncate the output, but add .... x <- c(head(x, lines), more) } } else { x <- c(more, x[lines], more) } # paste these lines together x <- paste(c(x, ""), collapse = "\n") hook_output(x, options) }) ## ----eval=FALSE--------------------------------------------------------------- # library(devtools) # install_github("gloewing/fastFMM") ## ----eval = FALSE------------------------------------------------------------- # # install packages (will only install them for the first time) # list.of.packages = c("lme4", "parallel", "cAIC4", "magrittr","dplyr", # "mgcv", "MASS", "lsei", "refund","stringr", "Matrix", "mvtnorm", # "arrangements", "progress", "ggplot2", "gridExtra", "here") # new.packages = list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] # if(length(new.packages)){ # chooseCRANmirror(ind=75) # install.packages(new.packages, dependencies = TRUE) # }else{ # # load packages if already installed # library(lme4) # library(parallel) # library(cAIC4) # library(magrittr) # library(dplyr) # library(mgcv) # library(MASS) # library(lsei) # library(refund) # library(stringr) # library(Matrix) # library(mvtnorm) # library(arrangements) # library(progress) # library(ggplot2) # library(gridExtra) # } ## ----------------------------------------------------------------------------- library(fastFMM) # load our package ## ----------------------------------------------------------------------------- dat <- read.csv("time_series.csv") # read in data head(dat[,1:6]) ## ----eval = FALSE------------------------------------------------------------- # Y_mat <- dat[,-seq(1,3)] # head(Y_mat[,1:5]) ## ----eval = FALSE------------------------------------------------------------- # dat <- data.frame(Y = Y_mat, dat[,seq(1,3)]) ## ----eval = FALSE------------------------------------------------------------- # mod <- fui(Y ~ treatment + # main effect of cue # (1 | id), # random intercept # data = dat) ## ----eval = FALSE------------------------------------------------------------- # Y_mat <- dat[,-seq(1,3)] # L <- ncol(Y_mat) # number of columns of functional outcome # # mod <- fui(Y ~ treatment + # main effect of cue # (treatment | id), # random intercept # data = dat, # argvals = seq(from = 1, to = L, by = 3) # every 3rd data point # ) ## ----------------------------------------------------------------------------- Y_mat <- dat[,-seq(1,3)] L <- ncol(Y_mat) # number of columns of functional outcome # model 1: random slope model mod1 <- fui(Y ~ treatment + # main effect of cue (treatment | id), # random intercept data = dat, var = FALSE) # model 2: random intercept model mod2 <- fui(Y ~ treatment + # main effect of cue (1 | id), # random intercept data = dat, var = FALSE) # compare model fits colMeans(mod1$aic) colMeans(mod2$aic) ## ----eval = FALSE------------------------------------------------------------- # mod <- fui(Y ~ treatment + # main effect of cue # (treatment | id/trial), # random intercept # data = dat, # subj_ID = "id") ## ----------------------------------------------------------------------------- mod <- fui(Y ~ treatment + # main effect of cue (1 | id), # random intercept data = dat) fui_plot <- plot_fui(mod) ## ----------------------------------------------------------------------------- align_time <- 1 # cue onset is at 2 seconds sampling_Hz <- 15 # sampling rate # plot titles: interpretation of beta coefficients plot_names <- c("Intercept", "Mean Signal Difference: Cue1 - Cue0") fui_plot <- plot_fui(mod, # model fit object x_rescale = sampling_Hz, # rescale x-axis to sampling rate align_x = align_time, # align to cue onset title_names = plot_names, xlab = "Time (s)", num_row = 2)