---
title: "Complete Example 2"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{example2}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

```{r setup, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

options(rmarkdown.html_vignette.check_title = FALSE)

```
## Program

"Complete Example 1" showed how to create a simple demographics table using
the *fmtr* package and *Tidyverse*.  Here is the same table created 
with only Base R and the *sassy* system of packages. 

The data for this example has been included in the **fmtr** package as an
external data file.  It may be accessed using the `system.file()` function
as shown below, or downloaded directly from the **fmtr** GitHub site 
[here](https://raw.githubusercontent.com/dbosak01/fmtr/master/inst/extdata/DM.csv)

```{r eval=FALSE, echo=TRUE}
library(sassy)

# Prepare Log -------------------------------------------------------------


options("logr.autolog" = TRUE,
        "logr.notes" = FALSE)

# Get temp location for log and report output
tmp <- tempdir()

# Open log
lf <- log_open(file.path(tmp, "example2.log"))


# Load and Prepare Data ---------------------------------------------------

sep("Prepare Data")

# Get path to sample data
pkg <- system.file("extdata", package = "fmtr")

# Define data library
libname(sdtm, pkg, "csv") 

# Prepare data
put("Subset DM dataset")
dm_mod <- subset(sdtm$DM, ARM != "SCREEN FAILURE", 
                 v(USUBJID, SEX, AGE, ARM)) |> put()

put("Get ARM population counts")
arm_pop <- proc_freq(dm_mod, tables = ARM, 
                     output = long,
                     options = v(nocum, nopercent, nonobs))
  

# Create Format Catalog --------------------------------------------------
sep("Create format catalog")

fmts <- fcat(AGECAT = value(condition(x >= 18 & x <= 24, "18 to 24"),
                            condition(x >= 25 & x <= 44, "25 to 44"),
                            condition(x >= 45 & x <= 64, "45 to 64"),
                            condition(x >= 65, ">= 65")),
             SEX = value(condition(is.na(x), "Missing", order = 3),
                         condition(x == "M", "Male", order = 1),
                         condition(x == "F", "Female", order = 2)),
             VAR = c("AGE" = "Age", 
                     "AGECAT" = "Age Group", 
                     "SEX" = "Sex"))

numfmts <- fcat(N = "%d", MEAN = "%.1f", STD = "(%04.2f)", MEDIAN = "%d", Q1 = "%.1f",
                Q3 = "%.1f", MIN = "%d", MAX = "%d", CNT = "%d", PCT = "(%4.1f%%)")

numlbls <- c(N = "n", MEANSD = "Mean (SD)", MEDIAN = "Median", Q1Q3 = "Q1 - Q3",
             MINMAX = "Min - Max")

# Age Summary Block -------------------------------------------------------

sep("Create summary statistics for age")

age_block <- proc_means(dm_mod, stats = v(n, mean, std, median, q1, q3, min, max),
                        class = ARM, options = v(nway, notype, nofreq)) |> 
  datastep(format = numfmts,
           keep = v(CLASS, VAR, N, MEANSD, MEDIAN, Q1Q3, MINMAX),
           {
             
             MEANSD <- fapply2(MEAN, STD)
             Q1Q3 <- fapply2(Q1, Q3, sep = " - ")
             MINMAX <- fapply2(MIN, MAX, sep = " - ")
           }) |> 
  proc_transpose(id = CLASS, copy = VAR, 
                 var = v(N, MEANSD, MEDIAN, Q1Q3, MINMAX),
                 name = "LABEL") |> 
  datastep({LABEL <- fapply(LABEL, numlbls)})
    
  
# Age Group Block ----------------------------------------------------------

sep("Create frequency counts for Age Group")

put("Create age group frequency counts")
ageg_block <- dm_mod |> 
  datastep({AGECAT <- fapply(AGE, fmts$AGECAT)}) |> 
  proc_freq(tables = AGECAT, by = ARM,
            options = nonobs) |> 
  datastep(format = numfmts,
           keep = v(VAR, BY, LABEL, CNTPCT),
           { 
             LABEL <- CAT
             CNTPCT <- fapply2(CNT, PCT)
           }) |> 
  proc_transpose(var = CNTPCT, by = LABEL, copy = VAR, id = BY, options = noname)

put("Sort age groups as desired")
ageg_block$LABEL <- factor(ageg_block$LABEL, levels = levels(fmts$AGECAT))
ageg_block <- proc_sort(ageg_block, by = LABEL, as.character = TRUE)


# Sex Block ---------------------------------------------------------------

sep("Create frequency counts for SEX")

put("Create sex frequency counts")
sex_block <- dm_mod |> 
  datastep({SEX <- fapply(SEX, fmts$SEX)}) |> 
  proc_freq(tables = SEX, by = ARM,
            options = nonobs) |> 
  datastep(format = numfmts,
           keep = v(VAR, BY, LABEL, CNTPCT),
           { 
             LABEL <- CAT
             CNTPCT <- fapply2(CNT, PCT)
           }) |> 
  proc_transpose(var = CNTPCT, by = LABEL, copy = VAR, id = BY, options = noname)

put("Sort age groups as desired")
sex_block$LABEL <- factor(sex_block$LABEL, levels = levels(fmts$SEX))
sex_block <- proc_sort(sex_block, by = LABEL, as.character = TRUE)


put("Combine blocks into final data frame")
final <- bind_rows(age_block, ageg_block, sex_block) |> put()

# Report ------------------------------------------------------------------


sep("Create and print report")

# Create Table
tbl <- create_table(final, first_row_blank = TRUE, borders = c("top", "bottom")) |> 
  column_defaults(from = `ARM A`, to = `ARM D`, align = "center", width = 1.25) |> 
  stub(vars = v(VAR, LABEL), "Variable", width = 2.5) |> 
  define(VAR, blank_after = TRUE, dedupe = TRUE, label = "Variable",
         format = fmts$VAR,label_row = TRUE) |> 
  define(LABEL, indent = .25, label = "Demographic Category") |> 
  define(`ARM A`,  label = "Treatment Group 1", n = arm_pop["ARM A"]) |> 
  define(`ARM B`,  label = "Treatment Group 2", n = arm_pop["ARM B"]) |> 
  define(`ARM C`,  label = "Treatment Group 3", n = arm_pop["ARM C"]) |> 
  define(`ARM D`,  label = "Treatment Group 4", n = arm_pop["ARM D"]) 

rpt <- create_report(file.path(tmp, "output/example2.rtf"), 
                     output_type = "RTF", font = "Arial") |> 
  set_margins(top = 1, bottom = 1) |> 
  page_header("Sponsor: Company", "Study: ABC") |> 
  titles("Table 1.0", bold = TRUE, blank_row = "none") |> 
  titles("Analysis of Demographic Characteristics", 
         "Safety Population") |> 
  add_content(tbl) |> 
  footnotes("Program: DM_Table.R",
            "NOTE: Denominator based on number of non-missing responses.") |> 
  page_footer(paste0("Date Produced: ", fapply(Sys.time(), "%d%b%y %H:%M")), 
              right = "Page [pg] of [tpg]")

res <- write_report(rpt)


# Clean Up ----------------------------------------------------------------
sep("Clean Up")

# Close log
log_close()

# View report
# file.show(res$modified_path)

# View log
# file.show(lf)



```

## Output

Here is the report produced by the above sample program:

<img src="../man/images/example2.png"/>

## Log

Here is the log produced by the above sample program:

```
=========================================================================
Log Path: C:/Users/dbosa/AppData/Local/Temp/RtmpKc23Rz/log/example2.log
Program Path: C:/Users/dbosa/Documents/.active-rstudio-document
Working Directory: C:/Projects/Archytas/Sassy/Code
User Name: dbosa
R Version: 4.3.2 (2023-10-31 ucrt)
Machine: SOCRATES x86-64
Operating System: Windows 10 x64 build 22621
Base Packages: stats graphics grDevices utils datasets methods base Other
Packages: tidylog_1.0.2 reporter_1.4.4 logr_1.3.5 sassy_1.2.1 lubridate_1.9.2
forcats_1.0.0 stringr_1.5.0 purrr_1.0.1 readr_2.1.4 tidyr_1.3.0 tibble_3.2.1
ggplot2_3.4.4 tidyverse_2.0.0 libr_1.2.8 dplyr_1.1.3 fmtr_1.6.2 procs_1.0.4
common_1.1.1
Log Start Time: 2024-01-07 18:26:25.636328
=========================================================================

=========================================================================
Prepare Data
=========================================================================

# library 'sdtm': 1 items
- attributes: csv not loaded
- path: C:/Users/dbosa/AppData/Local/R/win-library/4.3/fmtr/extdata
- items:
  Name Extension Rows Cols    Size        LastModified
1   DM       csv   87   24 45.5 Kb 2023-12-16 23:10:51

Subset DM dataset

# A tibble: 85 × 4
   USUBJID    SEX     AGE ARM  
   <chr>      <chr> <dbl> <chr>
 1 ABC-01-049 M        39 ARM D
 2 ABC-01-050 M        47 ARM B
 3 ABC-01-051 M        34 ARM A
 4 ABC-01-052 F        45 ARM C
 5 ABC-01-053 F        26 ARM B
 6 ABC-01-054 M        44 ARM D
 7 ABC-01-055 F        47 ARM C
 8 ABC-01-056 M        31 ARM A
 9 ABC-01-113 M        74 ARM D
10 ABC-01-114 F        72 ARM B
# ℹ 75 more rows
# ℹ Use `print(n = ...)` to see more rows

Get ARM population counts

proc_freq: input data set 85 rows and 4 columns
           tables: ARM
           output: long
           view: TRUE
           output: 1 datasets

# A tibble: 1 × 6
  VAR   STAT  `ARM A` `ARM B` `ARM C` `ARM D`
  <chr> <chr>   <dbl>   <dbl>   <dbl>   <dbl>
1 ARM   CNT        20      21      21      23

=========================================================================
Create format catalog
=========================================================================

# A user-defined format: 4 conditions
  Name Type        Expression    Label Order
1  obj    U x >= 18 & x <= 24 18 to 24    NA
2  obj    U x >= 25 & x <= 44 25 to 44    NA
3  obj    U x >= 45 & x <= 64 45 to 64    NA
4  obj    U           x >= 65    >= 65    NA

# A user-defined format: 3 conditions
  Name Type Expression   Label Order
1  obj    U   is.na(x) Missing     3
2  obj    U   x == "M"    Male     1
3  obj    U   x == "F"  Female     2

# A format catalog: 3 formats
- $AGECAT: type U, 4 conditions
- $SEX: type U, 3 conditions
- $VAR: type V, 3 elements

# A format catalog: 10 formats
- $N: type S, "%d"
- $MEAN: type S, "%.1f"
- $STD: type S, "(%04.2f)"
- $MEDIAN: type S, "%d"
- $Q1: type S, "%.1f"
- $Q3: type S, "%.1f"
- $MIN: type S, "%d"
- $MAX: type S, "%d"
- $CNT: type S, "%d"
- $PCT: type S, "(%4.1f%%)"

=========================================================================
Create summary statistics for age
=========================================================================

proc_means: input data set 85 rows and 4 columns
            class: ARM
            var: AGE
            stats: n mean std median q1 q3 min max
            view: TRUE
            output: 1 datasets

  CLASS VAR  N     MEAN      STD MEDIAN   Q1 Q3 MIN MAX
1 ARM A AGE 20 53.15000 11.89991   52.5 47.5 60  31  73
2 ARM B AGE 21 47.38095 16.25877   46.0 35.0 61  22  73
3 ARM C AGE 21 45.71429 14.41923   46.0 38.0 53  19  71
4 ARM D AGE 23 49.73913 14.32486   48.0 39.0 62  21  75

datastep: columns decreased from 10 to 7

  CLASS VAR  N       MEANSD MEDIAN        Q1Q3  MINMAX
1 ARM A AGE 20 53.1 (11.90)   52.5 47.5 - 60.0 31 - 73
2 ARM B AGE 21 47.4 (16.26)   46.0 35.0 - 61.0 22 - 73
3 ARM C AGE 21 45.7 (14.42)   46.0 38.0 - 53.0 19 - 71
4 ARM D AGE 23 49.7 (14.32)   48.0 39.0 - 62.0 21 - 75

proc_transpose: input data set 4 rows and 7 columns
                var: N MEANSD MEDIAN Q1Q3 MINMAX
                id: CLASS
                copy: VAR
                name: LABEL
                output dataset 5 rows and 6 columns

  VAR  LABEL        ARM A        ARM B        ARM C        ARM D
1 AGE      N           20           21           21           23
2 AGE MEANSD 53.1 (11.90) 47.4 (16.26) 45.7 (14.42) 49.7 (14.32)
3 AGE MEDIAN         52.5         46.0         46.0         48.0
4 AGE   Q1Q3  47.5 - 60.0  35.0 - 61.0  38.0 - 53.0  39.0 - 62.0
5 AGE MINMAX      31 - 73      22 - 73      19 - 71      21 - 75

datastep: columns started with 6 and ended with 6

  VAR     LABEL        ARM A        ARM B        ARM C        ARM D
1 AGE         n           20           21           21           23
2 AGE Mean (SD) 53.1 (11.90) 47.4 (16.26) 45.7 (14.42) 49.7 (14.32)
3 AGE    Median         52.5         46.0         46.0         48.0
4 AGE   Q1 - Q3  47.5 - 60.0  35.0 - 61.0  38.0 - 53.0  39.0 - 62.0
5 AGE Min - Max      31 - 73      22 - 73      19 - 71      21 - 75

=========================================================================
Create frequency counts for Age Group
=========================================================================

Create age group frequency counts

datastep: columns increased from 4 to 5

# A tibble: 85 × 5
   USUBJID    SEX     AGE ARM   AGECAT  
   <chr>      <chr> <dbl> <chr> <chr>   
 1 ABC-01-049 M        39 ARM D 25 to 44
 2 ABC-01-050 M        47 ARM B 45 to 64
 3 ABC-01-051 M        34 ARM A 25 to 44
 4 ABC-01-052 F        45 ARM C 45 to 64
 5 ABC-01-053 F        26 ARM B 25 to 44
 6 ABC-01-054 M        44 ARM D 25 to 44
 7 ABC-01-055 F        47 ARM C 45 to 64
 8 ABC-01-056 M        31 ARM A 25 to 44
 9 ABC-01-113 M        74 ARM D >= 65   
10 ABC-01-114 F        72 ARM B >= 65   
# ℹ 75 more rows
# ℹ Use `print(n = ...)` to see more rows

proc_freq: input data set 85 rows and 5 columns
           tables: AGECAT
           by: ARM
           view: TRUE
           output: 1 datasets

# A tibble: 16 × 5
   BY    VAR    CAT        CNT   PCT
   <chr> <chr>  <chr>    <dbl> <dbl>
 1 ARM A AGECAT >= 65        3 15   
 2 ARM A AGECAT 18 to 24     0  0   
 3 ARM A AGECAT 25 to 44     4 20   
 4 ARM A AGECAT 45 to 64    13 65   
 5 ARM B AGECAT >= 65        5 23.8 
 6 ARM B AGECAT 18 to 24     1  4.76
 7 ARM B AGECAT 25 to 44     8 38.1 
 8 ARM B AGECAT 45 to 64     7 33.3 
 9 ARM C AGECAT >= 65        2  9.52
10 ARM C AGECAT 18 to 24     3 14.3 
11 ARM C AGECAT 25 to 44     4 19.0 
12 ARM C AGECAT 45 to 64    12 57.1 
13 ARM D AGECAT >= 65        3 13.0 
14 ARM D AGECAT 18 to 24     1  4.35
15 ARM D AGECAT 25 to 44     7 30.4 
16 ARM D AGECAT 45 to 64    12 52.2 

datastep: columns decreased from 5 to 4

# A tibble: 16 × 4
   VAR    BY    LABEL    CNTPCT    
   <chr>  <chr> <chr>    <chr>     
 1 AGECAT ARM A >= 65    3 (15.0%) 
 2 AGECAT ARM A 18 to 24 0 ( 0.0%) 
 3 AGECAT ARM A 25 to 44 4 (20.0%) 
 4 AGECAT ARM A 45 to 64 13 (65.0%)
 5 AGECAT ARM B >= 65    5 (23.8%) 
 6 AGECAT ARM B 18 to 24 1 ( 4.8%) 
 7 AGECAT ARM B 25 to 44 8 (38.1%) 
 8 AGECAT ARM B 45 to 64 7 (33.3%) 
 9 AGECAT ARM C >= 65    2 ( 9.5%) 
10 AGECAT ARM C 18 to 24 3 (14.3%) 
11 AGECAT ARM C 25 to 44 4 (19.0%) 
12 AGECAT ARM C 45 to 64 12 (57.1%)
13 AGECAT ARM D >= 65    3 (13.0%) 
14 AGECAT ARM D 18 to 24 1 ( 4.3%) 
15 AGECAT ARM D 25 to 44 7 (30.4%) 
16 AGECAT ARM D 45 to 64 12 (52.2%)

proc_transpose: input data set 16 rows and 4 columns
                by: LABEL
                var: CNTPCT
                id: BY
                copy: VAR
                name: NAME
                output dataset 4 rows and 6 columns

# A tibble: 4 × 6
  VAR    LABEL    `ARM A`    `ARM B`   `ARM C`    `ARM D`   
  <chr>  <chr>    <chr>      <chr>     <chr>      <chr>     
1 AGECAT >= 65    3 (15.0%)  5 (23.8%) 2 ( 9.5%)  3 (13.0%) 
2 AGECAT 18 to 24 0 ( 0.0%)  1 ( 4.8%) 3 (14.3%)  1 ( 4.3%) 
3 AGECAT 25 to 44 4 (20.0%)  8 (38.1%) 4 (19.0%)  7 (30.4%) 
4 AGECAT 45 to 64 13 (65.0%) 7 (33.3%) 12 (57.1%) 12 (52.2%)

Sort age groups as desired

proc_sort: input data set 4 rows and 6 columns
           by: LABEL
           keep: VAR LABEL ARM A ARM B ARM C ARM D
           order: a
           output data set 4 rows and 6 columns

# A tibble: 4 × 6
  VAR    LABEL    `ARM A`    `ARM B`   `ARM C`    `ARM D`   
  <chr>  <chr>    <chr>      <chr>     <chr>      <chr>     
1 AGECAT 18 to 24 0 ( 0.0%)  1 ( 4.8%) 3 (14.3%)  1 ( 4.3%) 
2 AGECAT 25 to 44 4 (20.0%)  8 (38.1%) 4 (19.0%)  7 (30.4%) 
3 AGECAT 45 to 64 13 (65.0%) 7 (33.3%) 12 (57.1%) 12 (52.2%)
4 AGECAT >= 65    3 (15.0%)  5 (23.8%) 2 ( 9.5%)  3 (13.0%) 

=========================================================================
Create frequency counts for SEX
=========================================================================

Create sex frequency counts

datastep: columns started with 4 and ended with 4

# A tibble: 85 × 4
   USUBJID    SEX      AGE ARM  
   <chr>      <chr>  <dbl> <chr>
 1 ABC-01-049 Male      39 ARM D
 2 ABC-01-050 Male      47 ARM B
 3 ABC-01-051 Male      34 ARM A
 4 ABC-01-052 Female    45 ARM C
 5 ABC-01-053 Female    26 ARM B
 6 ABC-01-054 Male      44 ARM D
 7 ABC-01-055 Female    47 ARM C
 8 ABC-01-056 Male      31 ARM A
 9 ABC-01-113 Male      74 ARM D
10 ABC-01-114 Female    72 ARM B
# ℹ 75 more rows
# ℹ Use `print(n = ...)` to see more rows

proc_freq: input data set 85 rows and 4 columns
           tables: SEX
           by: ARM
           view: TRUE
           output: 1 datasets

# A tibble: 8 × 5
  BY    VAR   CAT      CNT   PCT
  <chr> <chr> <chr>  <dbl> <dbl>
1 ARM A SEX   Female     5  25  
2 ARM A SEX   Male      15  75  
3 ARM B SEX   Female    11  52.4
4 ARM B SEX   Male      10  47.6
5 ARM C SEX   Female     9  42.9
6 ARM C SEX   Male      12  57.1
7 ARM D SEX   Female     7  30.4
8 ARM D SEX   Male      16  69.6

datastep: columns decreased from 5 to 4

# A tibble: 8 × 4
  VAR   BY    LABEL  CNTPCT    
  <chr> <chr> <chr>  <chr>     
1 SEX   ARM A Female 5 (25.0%) 
2 SEX   ARM A Male   15 (75.0%)
3 SEX   ARM B Female 11 (52.4%)
4 SEX   ARM B Male   10 (47.6%)
5 SEX   ARM C Female 9 (42.9%) 
6 SEX   ARM C Male   12 (57.1%)
7 SEX   ARM D Female 7 (30.4%) 
8 SEX   ARM D Male   16 (69.6%)

proc_transpose: input data set 8 rows and 4 columns
                by: LABEL
                var: CNTPCT
                id: BY
                copy: VAR
                name: NAME
                output dataset 2 rows and 6 columns

# A tibble: 2 × 6
  VAR   LABEL  `ARM A`    `ARM B`    `ARM C`    `ARM D`   
  <chr> <chr>  <chr>      <chr>      <chr>      <chr>     
1 SEX   Female 5 (25.0%)  11 (52.4%) 9 (42.9%)  7 (30.4%) 
2 SEX   Male   15 (75.0%) 10 (47.6%) 12 (57.1%) 16 (69.6%)

Sort age groups as desired

proc_sort: input data set 2 rows and 6 columns
           by: LABEL
           keep: VAR LABEL ARM A ARM B ARM C ARM D
           order: a
           output data set 2 rows and 6 columns

# A tibble: 2 × 6
  VAR   LABEL  `ARM A`    `ARM B`    `ARM C`    `ARM D`   
  <chr> <chr>  <chr>      <chr>      <chr>      <chr>     
1 SEX   Male   15 (75.0%) 10 (47.6%) 12 (57.1%) 16 (69.6%)
2 SEX   Female 5 (25.0%)  11 (52.4%) 9 (42.9%)  7 (30.4%) 

Combine blocks into final data frame

      VAR     LABEL        ARM A        ARM B        ARM C        ARM D
1     AGE         n           20           21           21           23
2     AGE Mean (SD) 53.1 (11.90) 47.4 (16.26) 45.7 (14.42) 49.7 (14.32)
3     AGE    Median         52.5         46.0         46.0         48.0
4     AGE   Q1 - Q3  47.5 - 60.0  35.0 - 61.0  38.0 - 53.0  39.0 - 62.0
5     AGE Min - Max      31 - 73      22 - 73      19 - 71      21 - 75
6  AGECAT  18 to 24    0 ( 0.0%)    1 ( 4.8%)    3 (14.3%)    1 ( 4.3%)
7  AGECAT  25 to 44    4 (20.0%)    8 (38.1%)    4 (19.0%)    7 (30.4%)
8  AGECAT  45 to 64   13 (65.0%)    7 (33.3%)   12 (57.1%)   12 (52.2%)
9  AGECAT     >= 65    3 (15.0%)    5 (23.8%)    2 ( 9.5%)    3 (13.0%)
10    SEX      Male   15 (75.0%)   10 (47.6%)   12 (57.1%)   16 (69.6%)
11    SEX    Female    5 (25.0%)   11 (52.4%)    9 (42.9%)    7 (30.4%)

=========================================================================
Create and print report
=========================================================================

# A report specification: 1 pages
- file_path: 'C:\Users\dbosa\AppData\Local\Temp\RtmpKc23Rz/output/example2.rtf'
- output_type: RTF
- units: inches
- orientation: landscape
- margins: top 1 bottom 1 left 1 right 1
- line size/count: 9/36
- page_header: left=Sponsor: Company right=Study: ABC
- title 1: 'Table 1.0'
- title 2: 'Analysis of Demographic Characteristics'
- title 3: 'Safety Population'
- footnote 1: 'Program: DM_Table.R'
- footnote 2: 'NOTE: Denominator based on number of non-missing responses.'
- page_footer: left=Date Produced: 07Jan24 18:26 center= right=Page [pg] of [tpg]
- content: 
# A table specification:
- data: data.frame 'final' 11 rows 6 cols
- show_cols: all
- use_attributes: all
- stub: VAR LABEL 'Variable' width=2.5 align='left' 
- define: VAR 'Variable' dedupe='TRUE' 
- define: LABEL 'Demographic Category' 
- define: ARM A 'Treatment Group 1' 
- define: ARM B 'Treatment Group 2' 
- define: ARM C 'Treatment Group 3' 
- define: ARM D 'Treatment Group 4' 

=========================================================================
Clean Up
=========================================================================

=========================================================================
Log End Time: 2024-01-07 18:26:27.426253
Log Elapsed Time: 0 00:00:01
=========================================================================

```