## ----global options, include = FALSE------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) knitr::opts_knit$set(root.dir = tempdir()) ## ----setup-------------------------------------------------------------------- library(gcplyr) library(dplyr) library(ggplot2) ## ----------------------------------------------------------------------------- # This code was previously explained # Here we're re-running it so it's available for us to work with example_tidydata <- trans_wide_to_tidy(example_widedata_noiseless, id_cols = "Time") ex_dat_mrg <- merge_dfs(example_tidydata, example_design_tidy) ex_dat_mrg$Well <- factor(ex_dat_mrg$Well, levels = paste(rep(LETTERS[1:8], each = 12), 1:12, sep = "")) #Convert time to hours ex_dat_mrg$Time <- ex_dat_mrg$Time/3600 ## ----------------------------------------------------------------------------- ex_dat_mrg <- mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage), deriv = calc_deriv(x = Time, y = Measurements)) ## ----------------------------------------------------------------------------- sample_wells <- c("A1", "F1", "F10", "E11") # Now let's plot the derivative ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells), aes(x = Time, y = deriv)) + geom_line() + facet_wrap(~Well, scales = "free") ## ----include = FALSE---------------------------------------------------------- # For computational speed, let's just keep the wells we'll be focusing on # (this is hidden from readers bc from this point on we never print out # the df anyway so there's no difference in the output by filtering here) ex_dat_mrg <- dplyr::filter(ex_dat_mrg, Well %in% sample_wells) ## ----------------------------------------------------------------------------- ex_dat_mrg <- mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage), deriv_percap = calc_deriv(x = Time, y = Measurements, percapita = TRUE, blank = 0)) # Now let's plot the per-capita derivative ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells), aes(x = Time, y = deriv_percap)) + geom_line() + facet_wrap(~Well, scales = "free") ## ----------------------------------------------------------------------------- ex_dat_mrg <- mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage), deriv_percap5 = calc_deriv(x = Time, y = Measurements, percapita = TRUE, blank = 0, window_width_n = 5, trans_y = "log")) # Now let's plot the derivative ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells), aes(x = Time, y = deriv_percap5)) + geom_line() + facet_wrap(~Well, scales = "free") ## ----------------------------------------------------------------------------- ex_dat_mrg <- mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage), deriv_percap5 = calc_deriv(x = Time, y = Measurements, percapita = TRUE, blank = 0, window_width_n = 5, trans_y = "log"), doub_time = doubling_time(y = deriv_percap5)) head(ex_dat_mrg)