--- title: "Geographically Optimal Similarity (GOS) and the Third Law of Geography in R" output: rmarkdown::html_vignette: fig_caption: true self_contained: yes vignette: > %\VignetteIndexEntry{geosimilarity} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} ---   ### Citation for package `geosimilarity` To cite **`geosimilarity` R package** in publications, please use: **Song, Y. (2022) "Geographically Optimal Similarity", Mathematical Geosciences. doi: [10.1007/s11004-022-10036-8][7].**     ## 1. Introduction to `geosimilarity` package *The package can be used to address following issues:* - Geographically optimal similarity (GOS) modeling. - Modeling the Third Law of Geography (i.e., basic configuration similarity (BCS) model). - Spatial prediction. More details of GOS models can be found in [Song (2022)][7].   ## 2. Spatial prediction using GOS model According to [Song (2022)][7], GOS model consists of four primary steps: (1) Characterizing geographical configurations, (2) determining parameters for the optimal similarity, (3) spatial prediction using GOS and uncertainty assessment, and (4) model evaluation. The process of using `geosimilarity` package to conduct GOS modeling is presented as follows. ### 2.1 Characterizing geographical configurations The `geosimilarity` package contains two spatial datasets: - `zn`: Spatial samples of Zn concentrations and explanatory variables at sample locations - `grid`: Spatial grid data of explanatory variables used for the prediction ``` r install.packages("geosimilarity", dependencies = TRUE) # or run the following code: install.packages("geosimilarity", dep = TRUE) ``` ``` r library(geosimilarity) data("zn") head(zn) ## # A tibble: 6 × 12 ## Lon Lat Zn Elevation Slope Aspect Water NDVI SOC pH Road Mine ## ## 1 120. -28.5 10 455. 0.236 306. 0.014 0.184 0.909 5.95 49.4 55.6 ## 2 120. -28.4 30 451. 0.207 293. 2.20 0.202 0.906 6.05 49.0 51.1 ## 3 120. -28.4 30 443. 0.285 325. 0.0119 0.163 0.848 5.76 45.1 45.0 ## 4 120. -27.4 30 509. 0.236 98.4 3.06 0.204 0.851 5.82 0.0774 49.0 ## 5 120. -28.3 33 427. 0.191 329. 3.53 0.179 0.933 5.85 39.9 39.8 ## 6 120. -27.3 27 510. 0.211 105. 3.38 0.191 0.868 6.07 0.0468 48.7 ``` Data pre-processing and variable selection: ``` r # log-transformation hist(zn$Zn) ``` ![](../man/figures/correlation-1.png) ``` r zn$Zn <- log(zn$Zn) hist(zn$Zn) ``` ![](../man/figures/correlation-2.png) ``` r # remove outliers k <- removeoutlier(zn$Zn, coef = 2.5) ## Remove 9 outlier(s) dt <- zn[-k,] # correlation library("PerformanceAnalytics") ## Loading required package: xts ## Loading required package: zoo ## ## Attaching package: 'zoo' ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric ## ## Attaching package: 'PerformanceAnalytics' ## The following object is masked from 'package:graphics': ## ## legend cor_dt <- dt[, c(3:12)] chart.Correlation(cor_dt, histogram = TRUE, pch = 19) ``` ![](../man/figures/correlation-3.png) ``` r # multicollinearity library(car) ## Loading required package: carData m1 <- lm(Zn ~ Slope + Water + NDVI + SOC + pH + Road + Mine, data = dt) car::vif(m1) ## Slope Water NDVI SOC pH Road Mine ## 1.651039 1.232454 1.459539 1.355824 1.568347 2.273387 2.608347 ``` In this step, the selected variables include Slope, Water, NDVI, SOC, pH, Road, and Mine. ### 2.2 Determining the optimal similarity In the `gos_bestkappa()` function, if you set more optional numbers to the `kappa` vector and a higher value of the cross-validation repeat times `nrepeat`, a $\kappa$ value enabling more accurate prediction will be selected, but the computation time will be increased. You can specify the `cores` parameter to use multiple CPU cores for parallel computing. *The default ratio of train set to test set in `gos_bestkappa()` is `1:1`(`0.5`). You can specify the ratio of train set to test set by `nsplit` parameter* ``` r system.time({ b1 <- gos_bestkappa(Zn ~ Slope + Water + NDVI + SOC + pH + Road + Mine, data = dt, kappa = c(0.01, 0.05, 0.1, 0.2, 0.5, 1), nrepeat = 2, cores = 1) }) ## user system elapsed ## 3.42 0.08 4.67 b1$bestkappa ## [1] 0.1 b1$cvmean ## # A tibble: 6 × 2 ## kappa rmse ## ## 1 0.01 0.681 ## 2 0.05 0.663 ## 3 0.1 0.659 ## 4 0.2 0.661 ## 5 0.5 0.664 ## 6 1 0.665 system.time({ b2 <- gos_bestkappa(Zn ~ Slope + Water + NDVI + SOC + pH + Road + Mine, data = dt, kappa = c(seq(0.01, 0.1, 0.01), seq(0.2, 1, 0.1)), nrepeat = 10, cores = 6) }) ## user system elapsed ## 0.05 0.00 17.17 b2$bestkappa ## [1] 0.08 b2$cvmean ## # A tibble: 19 × 2 ## kappa rmse ## ## 1 0.01 0.694 ## 2 0.02 0.680 ## 3 0.03 0.674 ## 4 0.04 0.672 ## 5 0.05 0.669 ## 6 0.06 0.667 ## 7 0.07 0.667 ## 8 0.08 0.667 ## 9 0.09 0.667 ## 10 0.1 0.667 ## 11 0.2 0.669 ## 12 0.3 0.671 ## 13 0.4 0.672 ## 14 0.5 0.672 ## 15 0.6 0.673 ## 16 0.7 0.673 ## 17 0.8 0.673 ## 18 0.9 0.673 ## 19 1 0.673 library(cowplot) plot_grid(b1$plot,b2$plot,nrow = 1,label_fontfamily = 'serif', labels = paste0('(',letters[1:2],')'), label_fontface = 'plain',label_size = 10, hjust = -1.5,align = 'hv') ``` ![**Figure 1**. Processes of determining the optimal similarity. (a) The optional `kappa` is (0.01, 0.05, 0.1, 0.2, 0.5, 1) and `nrepeat` is 2. (b) The optional `kappa` is (0.01, 0.02, ..., 0.09, 0.1, 0.2, ..., 1) and `nrepeat` is 10.](../man/figures/bestkappa-1.png) ### 2.3 Spatial prediction ``` r system.time({ g2 <- gos(Zn ~ Slope + Water + NDVI + SOC + pH + Road + Mine, data = dt, newdata = grid, kappa = 0.08, cores = 6) }) ## user system elapsed ## 0.06 0.00 5.53 grid$pred <- exp(g2$pred) grid$uc99 <- g2$`uncertainty99` library(ggplot2) library(viridis) ## Loading required package: viridisLite f1 = ggplot(grid, aes(x = Lon, y = Lat, fill = pred)) + geom_tile() + scale_fill_viridis(option="magma", direction = -1) + coord_equal() + labs(fill='Prediction') + theme_bw() f2 = ggplot(grid, aes(x = Lon, y = Lat, fill = uc99)) + geom_tile() + scale_fill_viridis(option="mako", direction = -1) + coord_equal() + labs(fill=bquote(Uncertainty~(zeta==0.99))) + theme_bw() plot_grid(f1,f2,nrow = 1,label_fontfamily = 'serif', labels = paste0('(',letters[1:2],')'), label_fontface = 'plain',label_size = 10, hjust = -1.5,align = 'hv') ``` ![**Figure 2**. Geographially optimal similarity (GOS)-based prediction (a) and uncertainty (b).](../man/figures/gos_result-1.png) In addition, the following codes can be used to plot uncertainty under different $\zeta$ values. ``` r uc <- g2 %>% dplyr::select(dplyr::starts_with("uncertainty")) %>% dplyr::bind_cols(grid[,2:3],.) %>% tidyr::pivot_longer(cols = -c(1,2), names_to = "uncertainty", values_to = "value") ggplot(uc, aes(x = Lon, y = Lat, fill = value)) + geom_tile() + scale_fill_viridis(option="mako", direction = -1) + coord_equal() + facet_wrap(~ uncertainty) + labs(fill='Uncertainty') + theme_bw() ``` ![**Figure 3**. Geographially optimal similarity (GOS)-based spatial prediction uncertainties under different $\zeta$ values.](../man/figures/uncertainty-1.png) ### 2.4 Model evaluation We can compare model accuracy of GOS with various models, such as kriging, multivariate regression, regression kriging, random forest, BCS, etc., as shown in [Song (2022)][7]. Here is a simple example of comparing modeling accuracy between BCS and GOS. ``` r set.seed(99) # split data for validation: 50% training; 50% testing split <- sample(1:nrow(dt), round(nrow(dt)*0.5)) train <- dt[split,] test <- dt[-split,] library(DescTools) ## ## Attaching package: 'DescTools' ## The following object is masked from 'package:car': ## ## Recode # BCS h1 <- gos(Zn ~ Slope + Water + NDVI + SOC + pH + Road + Mine, data = train, newdata = test, kappa = 1) MAE(test$Zn, h1$pred) ## [1] 0.5158373 RMSE(test$Zn, h1$pred) ## [1] 0.6599409 # GOS h2 <- gos(Zn ~ Slope + Water + NDVI + SOC + pH + Road + Mine, data = train, newdata = test, kappa = 0.08) MAE(test$Zn, h2$pred) ## [1] 0.5089462 RMSE(test$Zn, h2$pred) ## [1] 0.6523436 ``` As a result, the MAE of BCS is 0.5158 and the MAE of GOS is 0.5089, the RMSE of BCS is 0.6599 and the RMSE of GOS is 0.6523. Compared with BCS, GOS reduced 1.34% of MAE and 1.15% of RMSE.   [7]: https://doi.org/10.1007/s11004-022-10036-8