---
title: "Plot model coefficients with `ggcoef_model()`"
author: Joseph Larmarange
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Plot model coefficients with `ggcoef_model()`}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
```

```{r setup}
library(ggstats)
```

```{r include=FALSE}
if (
  !broom.helpers::.assert_package("emmeans", boolean = TRUE)
) {
  knitr::opts_chunk$set(eval = FALSE)
}
```

The purpose of `ggcoef_model()` is to quickly plot the coefficients of a model. It is an updated and improved version of `GGally::ggcoef()` based on `broom.helpers::tidy_plus_plus()`. For displaying a nicely formatted table of the same models, look at `gtsummary::tbl_regression()`.

## Quick coefficients plot

To work automatically, this function requires the `{broom.helpers}`. Simply call `ggcoef_model()` with a model object. It could be the result of `stats::lm`, `stats::glm` or any other model covered by `{broom.helpers}`.

```{r ggcoef-reg}
data(tips, package = "reshape")
mod_simple <- lm(tip ~ day + time + total_bill, data = tips)
ggcoef_model(mod_simple)
```

In the case of a logistic regression (or any other model for which coefficients are usually exponentiated), simply indicated `exponentiate = TRUE`. Note that a logarithmic scale will be used for the x-axis.

```{r ggcoef-titanic}
d_titanic <- as.data.frame(Titanic)
d_titanic$Survived <- factor(d_titanic$Survived, c("No", "Yes"))
mod_titanic <- glm(
  Survived ~ Sex * Age + Class,
  weights = Freq,
  data = d_titanic,
  family = binomial
)
ggcoef_model(mod_titanic, exponentiate = TRUE)
```

## Customizing the plot

### Variable labels

You can use the `{labelled}` package to define variable labels. They will be automatically used by `ggcoef_model()`. Note that variable labels should be defined before computing the model.

```{r}
library(labelled)
tips_labelled <- tips |>
  set_variable_labels(
    day = "Day of the week",
    time = "Lunch or Dinner",
    total_bill = "Bill's total"
  )
mod_labelled <- lm(tip ~ day + time + total_bill, data = tips_labelled)
ggcoef_model(mod_labelled)
```

You can also define custom variable labels directly by passing a named vector to the `variable_labels` option.

```{r}
ggcoef_model(
  mod_simple,
  variable_labels = c(
    day = "Week day",
    time = "Time (lunch or dinner ?)",
    total_bill = "Total of the bill"
  )
)
```

If variable labels are to long, you can pass `ggplot2::label_wrap_gen()` or any other labeller function to `facet_labeller.`

```{r}
ggcoef_model(
  mod_simple,
  variable_labels = c(
    day = "Week day",
    time = "Time (lunch or dinner ?)",
    total_bill = "Total of the bill"
  ),
  facet_labeller = ggplot2::label_wrap_gen(10)
)
```

Use `facet_row = NULL` to hide variable names.

```{r}
ggcoef_model(mod_simple, facet_row = NULL, colour_guide = TRUE)
```

### Term labels

Several options allows you to customize term labels.

```{r}
ggcoef_model(mod_titanic, exponentiate = TRUE)
ggcoef_model(
  mod_titanic,
  exponentiate = TRUE,
  show_p_values = FALSE,
  signif_stars = FALSE,
  add_reference_rows = FALSE,
  categorical_terms_pattern = "{level} (ref: {reference_level})",
  interaction_sep = " x "
) +
  ggplot2::scale_y_discrete(labels = scales::label_wrap(15))
```

By default, for categorical variables using treatment and sum contrasts, reference rows will be added and displayed on the graph.

```{r}
mod_titanic2 <- glm(
  Survived ~ Sex * Age + Class,
  weights = Freq,
  data = d_titanic,
  family = binomial,
  contrasts = list(Sex = contr.sum, Class = contr.treatment(4, base = 3))
)
ggcoef_model(mod_titanic2, exponentiate = TRUE)
```

Continuous variables with polynomial terms defined with `stats::poly()` are also properly managed.

```{r}
mod_poly <- lm(Sepal.Length ~ poly(Petal.Width, 3) + Petal.Length, data = iris)
ggcoef_model(mod_poly)
```

Use `no_reference_row` to indicate which variables should not have a reference row added.

```{r}
ggcoef_model(
  mod_titanic2,
  exponentiate = TRUE,
  no_reference_row = "Sex"
)
ggcoef_model(
  mod_titanic2,
  exponentiate = TRUE,
  no_reference_row = broom.helpers::all_dichotomous()
)
ggcoef_model(
  mod_titanic2,
  exponentiate = TRUE,
  no_reference_row = broom.helpers::all_categorical(),
  categorical_terms_pattern = "{level}/{reference_level}"
)
```

### Elements to display

Use `intercept = TRUE` to display intercepts.

```{r}
ggcoef_model(mod_simple, intercept = TRUE)
```

You can remove confidence intervals with `conf.int = FALSE`.

```{r}
ggcoef_model(mod_simple, conf.int = FALSE)
```

By default, significant terms (i.e. with a p-value below 5%) are highlighted using two types of dots. You can control the level of significance with `significance` or remove it with `significance = NULL`.

```{r}
ggcoef_model(mod_simple, significance = NULL)
```

By default, dots are colored by variable. You can deactivate this behavior with `colour = NULL`.

```{r}
ggcoef_model(mod_simple, colour = NULL)
```

You can display only a subset of terms with **include**.

```{r}
ggcoef_model(mod_simple, include = c("time", "total_bill"))
```

It is possible to use `tidyselect` helpers.

```{r}
ggcoef_model(mod_simple, include = dplyr::starts_with("t"))
```

You can remove stripped rows with `stripped_rows = FALSE`.

```{r}
ggcoef_model(mod_simple, stripped_rows = FALSE)
```

Do not hesitate to consult the help file of `ggcoef_model()` to see all available options.

### ggplot2 elements

The plot returned by `ggcoef_model()` is a classic `ggplot2` plot. You can therefore apply `ggplot2` functions to it.

```{r}
ggcoef_model(mod_simple) +
  ggplot2::xlab("Coefficients") +
  ggplot2::ggtitle("Custom title") +
  ggplot2::scale_color_brewer(palette = "Set1") +
  ggplot2::theme(legend.position = "right")
```

## Forest plot with a coefficient table

`ggcoef_table()` is a variant of `ggcoef_model()` displaying a coefficient table on the right of the forest plot.

```{r}
ggcoef_table(mod_simple)
ggcoef_table(mod_titanic, exponentiate = TRUE)
```

You can easily customize the columns to be displayed.

```{r}
ggcoef_table(
  mod_simple,
  table_stat = c("label", "estimate", "std.error", "ci"),
  ci_pattern = "{conf.low} to {conf.high}",
  table_stat_label = list(
    estimate = scales::label_number(accuracy = .001),
    conf.low = scales::label_number(accuracy = .01),
    conf.high = scales::label_number(accuracy = .01),
    std.error = scales::label_number(accuracy = .001),
    label = toupper
  ),
  table_header = c("Term", "Coef.", "SE", "CI"),
  table_witdhs = c(2, 3)
)
```

## Multinomial models

For multinomial models, simply use `ggcoef_model()` or `ggcoef_table()`. Additional visualizations are available using `ggcoef_dodged()` or `ggcoef_faceted()`.

```{r}
library(nnet)
hec <- as.data.frame(HairEyeColor)
mod <- multinom(
  Hair ~ Eye + Sex,
  data = hec,
  weights = hec$Freq
)
```

```{r, fig.height=9, fig.width=6}
mod |> ggcoef_model(exponentiate = TRUE)
mod |> ggcoef_table(exponentiate = TRUE)
```

```{r, fig.height=4, fig.width=6}
mod |> ggcoef_dodged(exponentiate = TRUE)
mod |> ggcoef_faceted(exponentiate = TRUE)
```

You can use `group_labels` to customize the label of each level.

```{r}
mod |>
  ggcoef_faceted(
    group_labels = c("Brown" = "Brown\n(ref: Black)"),
    exponentiate = TRUE
  )
```

## Multi-components models

Multi-components models such as zero-inflated Poisson or beta regression generate a set of terms for each of their components. simply use `ggcoef_model()` or `ggcoef_table()`. Additional visualizations are available using `ggcoef_dodged()` or `ggcoef_faceted()`.

```{r}
library(pscl)
data("bioChemists", package = "pscl")
mod <- zeroinfl(art ~ fem * mar | fem + mar, data = bioChemists)
```

```{r, fig.height=9, fig.width=6}
mod |> ggcoef_model()
mod |> ggcoef_table()
```

```{r, fig.height=4, fig.width=6}
mod |> ggcoef_dodged(exponentiate = TRUE)
mod |> ggcoef_faceted(
  exponentiate = TRUE,
  group_labels = c(conditional = "Count", zero_inflated = "Zero-inflated")
)
```

## Comparing several models

You can easily compare several models with `ggcoef_compare()`. To be noted, `ggcoef_compare()` is not compatible with multinomial or multi-components models.

```{r}
mod1 <- lm(Fertility ~ ., data = swiss)
mod2 <- step(mod1, trace = 0)
mod3 <- lm(Fertility ~ Agriculture + Education * Catholic, data = swiss)
models <- list(
  "Full model" = mod1,
  "Simplified model" = mod2,
  "With interaction" = mod3
)

ggcoef_compare(models)
ggcoef_compare(models, type = "faceted")
```

## Advanced users

Advanced users could use their own dataset and pass it to `ggcoef_plot()`. Such dataset could be produced by `ggcoef_model()`, `ggcoef_dodged()`, `ggcoef_faceted()` or `ggcoef_compare()` with the option `return_data = TRUE` or by using `broom::tidy()` or `broom.helpers::tidy_plus_plus()`.

## Supported models

```{r, echo=FALSE}
broom.helpers::supported_models |>
  knitr::kable()
```

Note: this list of models has been tested. `{broom.helpers}`, and therefore `ggcoef_model()`, may or may not work properly or partially with other types of models.