## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo = FALSE, results = 'hide'------------------------------------------- library(gimap) ## ----eval = FALSE------------------------------------------------------------- # output_dir <- "output_treatment" # dir.create(output_dir, showWarnings = FALSE) ## ----eval = FALSE------------------------------------------------------------- # example_data <- get_example_data("count_treatment") ## ----eval = FALSE------------------------------------------------------------- # colnames(example_data) ## ----eval = FALSE------------------------------------------------------------- # counts <- example_data %>% # select(c("pretreatment", "dmsoA", "dmsoB", "drug1A", "drug1B")) %>% # as.matrix() ## ----eval = FALSE------------------------------------------------------------- # pg_ids <- example_data %>% # dplyr::select("id") ## ----eval = FALSE------------------------------------------------------------- # sample_metadata <- data.frame( # col_names = c("pretreatment", "dmsoA", "dmsoB", "drug1A", "drug1B"), # drug_treatment = as.factor(c("pretreatment", "dmso", "dmso", "drug", "drug")) # ) ## ----eval = FALSE------------------------------------------------------------- # gimap_dataset <- setup_data( # counts = counts, # pg_ids = pg_ids, # sample_metadata = sample_metadata # ) ## ----eval = FALSE------------------------------------------------------------- # str(gimap_dataset) ## ----eval = FALSE------------------------------------------------------------- # nrow(gimap_dataset$transformed_data$log2_cpm) ## ----eval = FALSE------------------------------------------------------------- # run_qc(gimap_dataset, # output_file = file.path(output_dir, "example_qc_report.Rmd"), # overwrite = TRUE, # plots_dir = "plots", # quiet = TRUE # ) ## ----eval = FALSE------------------------------------------------------------- # gimap_filtered <- gimap_dataset %>% # gimap_filter() ## ----eval = FALSE------------------------------------------------------------- # nrow(gimap_filtered$filtered_data$transformed_log2_cpm) ## ----eval = FALSE------------------------------------------------------------- # str(gimap_filtered$filtered_data) ## ----eval = FALSE------------------------------------------------------------- # nrow(gimap_filtered$filtered_data$transformed_log2_cpm) ## ----eval = FALSE------------------------------------------------------------- # gimap_dataset <- gimap_filtered %>% # gimap_annotate(cell_line = "PC9") %>% # # Whatever is specified for "control_name" is what will be used to normalize other data points # gimap_normalize( # treatments = "drug_treatment", # control_name = "pretreatment" # ) %>% # calc_gi() ## ----eval = FALSE------------------------------------------------------------- # head(gimap_dataset$gi_scores) ## ----eval = FALSE------------------------------------------------------------- # head(dplyr::arrange(gimap_dataset$gi_score, fdr)) ## ----eval = FALSE------------------------------------------------------------- # plot_exp_v_obs_scatter(gimap_dataset) # # # Save it to a file # ggsave(file.path(output_dir, "exp_v_obs_scatter.png")) ## ----eval = FALSE------------------------------------------------------------- # plot_rank_scatter(gimap_dataset) # # # Save it to a file # ggsave(file.path(output_dir, "plot_rank_scatter.png")) ## ----eval = FALSE------------------------------------------------------------- # plot_volcano(gimap_dataset) # # # Save it to a file # ggsave(file.path(output_dir, "volcano_plot.png")) ## ----eval = FALSE------------------------------------------------------------- # # "DUSP21_DUSP18" is top result so let's plot that # plot_targets(gimap_dataset, target1 = "DUSP21", target2 = "DUSP18") # # # Save it to a file # ggsave(file.path(output_dir, "DUSP21_DUSP18.png")) ## ----eval = FALSE------------------------------------------------------------- # readr::write_tsv(gimap_dataset$gi_scores, file.path(output_dir, "gi_scores.tsv")) ## ----eval = FALSE------------------------------------------------------------- # saveRDS(gimap_dataset, file.path(output_dir, "gimap_dataset_final_treatment.RDS")) ## ----------------------------------------------------------------------------- sessionInfo()