## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(healthatlas) ## ----------------------------------------------------------------------------- ha_set("chicagohealthatlas.org") ## ----------------------------------------------------------------------------- ha_get() ## ----------------------------------------------------------------------------- topics <- ha_topics(progress = FALSE) topics ## ----include = FALSE---------------------------------------------------------- library(dplyr) ## ----------------------------------------------------------------------------- library(dplyr) library(purrr) # filter by dataset topics %>% filter(map_lgl(topic_datasets, ~ "healthy-chicago-survey" %in% .x$key)) # filter by subcategory topics %>% filter(map_lgl(topic_subcategories, ~ "diet-exercise" %in% .x$key)) # filter by keyword topics %>% filter(map_lgl(topic_keywords, ~ "activity" %in% .x)) ## ----------------------------------------------------------------------------- subcategories <- ha_subcategories() subcategories ## ----------------------------------------------------------------------------- ha_topics("diet-exercise") ## ----------------------------------------------------------------------------- coverage <- ha_coverage("HCSFVAP", progress = FALSE) coverage ## ----------------------------------------------------------------------------- ease_of_access <- ha_data( topic_key = "HCSFVAP", population_key = "", period_key = "2022-2023", layer_key = "neighborhood" ) ease_of_access ## ----------------------------------------------------------------------------- combinations_of_data <- ha_data( topic_key = c("POP", "UMP"), population_key = c("", "H"), period_key = c("2017-2021", "2018-2022", "invalid"), layer_key = "neighborhood" ) combinations_of_data ## ----------------------------------------------------------------------------- library(tibble) library(purrr) # creating a table of data I want metadata <- tribble( ~topic_key, ~population_key, ~period_key, ~layer_key, "POP", "", "2017-2021", "neighborhood", "HCSFVAP", "", "2020-2021", "neighborhood", "UMP", "H", "2017-2021", "neighborhood", ) metadata %>% pmap(ha_data) ## ----------------------------------------------------------------------------- layers <- ha_layers() layers ## ----------------------------------------------------------------------------- community_areas <- ha_layer("neighborhood") community_areas ## ----------------------------------------------------------------------------- ease_of_access <- ha_data( topic_key = "HCSFVAP", population_key = "", period_key = "2022-2023", layer_key = "neighborhood", geometry = TRUE ) ease_of_access ## ----------------------------------------------------------------------------- library(ggplot2) plot <- ggplot(ease_of_access) + geom_sf(aes(fill = value), alpha = 0.7) + scale_fill_distiller(palette = "GnBu", direction = 1) + labs( title = "Easy Access to Fruits and Vegetables within Chicago", fill = "Percent of adults who reported\nthat it is very easy for them to\nget fresh fruits and vegetables." ) + theme_minimal() plot ## ----------------------------------------------------------------------------- point_layers <- ha_point_layers() point_layers ## ----------------------------------------------------------------------------- grocery_stores <- ha_point_layer("7d9caf3c-75e6-4382-8c97-069696a3efbf") ## ----------------------------------------------------------------------------- plot + geom_sf(data = grocery_stores, size = 0.5)