## ----echo=FALSE, prompt=FALSE, message=FALSE, warning=FALSE------------------- library(iraceplot, quietly = TRUE) library(plotly) iraceResults <- read_logfile(system.file(package="iraceplot", "exdata", "guide-example.Rdata", mustWork = TRUE)) ## ----fig.align="center", fig.width= 7, message=FALSE, prompt=FALSE, eval=FALSE---- # parallel_coord(iraceResults) ## ----fig.align="center", fig.width= 7, message=FALSE, prompt=FALSE, eval=FALSE---- # all_elite <- iraceResults$allConfigurations[unlist(iraceResults$allElites),] # plot_configurations(all_elite, iraceResults$scenario$parameters) ## ----fig.align="center", fig.width= 7, fig.height=6, message=FALSE, prompt=FALSE, eval=FALSE---- # parallel_cat(irace_results = iraceResults, # param_names=c("algorithm", "localsearch", "dlb", "nnls")) ## ----fig.align="center", fig.width= 7, message=FALSE, prompt=FALSE, eval=FALSE---- # sampling_pie(irace_results = iraceResults, param_names=c("algorithm", "localsearch", "alpha", "beta", "rho")) ## ----fig.align="center", fig.width= 7, message=FALSE, prompt=FALSE, eval=FALSE---- # sampling_frequency(iraceResults, param_names = c("beta")) ## ----fig.align="center", fig.width= 7, fig.height=7, message=FALSE, prompt=FALSE, eval=FALSE---- # sampling_frequency(iraceResults$allConfigurations, iraceResults$scenario$parameters, param_names = c("alpha")) ## ----fig.align="center", fig.width= 7, fig.height=6, eval=FALSE--------------- # sampling_frequency_iteration(iraceResults, param_name = "beta") ## ----fig.align="center", fig.width= 7, fig.height=6, eval=FALSE--------------- # sampling_heatmap(iraceResults, param_names = c("beta","alpha")) ## ----fig.align="center", fig.width= 7, fig.height=6, eval=FALSE--------------- # sampling_heatmap2(iraceResults$allConfigurations, iraceResults$scenario$parameters, # param_names = c("localsearch","nnls"), sizes=c(0,5)) ## ----fig.align="center", fig.width= 7, eval=FALSE----------------------------- # sampling_distance(iraceResults, t=0.05) ## ----fig.align="center", fig.width=7, eval=FALSE------------------------------ # boxplot_test(iraceResults, type="best") ## ----fig.align="center", fig.width=7, eval=FALSE------------------------------ # scatter_test(iraceResults, x_id = 808, y_id = 809, interactive=TRUE) ## ----fig.align="center", fig.width=7, eval=FALSE------------------------------ # boxplot_training(iraceResults) ## ----fig.align="center", fig.width=7, eval=FALSE------------------------------ # scatter_training(iraceResults, x_id = 808, y_id = 809, interactive=TRUE) ## ----fig.align="center", fig.width=7, eval=FALSE------------------------------ # boxplot_performance(iraceResults$experiments, allElites=list(c(803,808), c(809,800)), first_is_best = TRUE) ## ----fig.align="center", fig.width=7, eval=FALSE------------------------------ # scatter_performance(iraceResults$experiments, x_id = 83, y_id = 809, interactive=TRUE) ## ----fig.align="center", fig.width=7, eval=FALSE------------------------------ # plot_experiments_matrix(iraceResults, interactive = TRUE) ## ----fig.align="center", fig.width=7, eval=FALSE------------------------------ # plot_model(iraceResults, param_name="algorithm") ## ----fig.align="center", fig.width=7, fig.height=6, message=FALSE, prompt=FALSE, results='hide', eval=FALSE---- # plot_model(iraceResults, param_name="alpha") ## ----fig.align="center", eval=FALSE------------------------------------------- # report(iraceResults, filename="report")