--- title: Multivariate Elastic Net Regression output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{vignette} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo=TRUE,eval=!grepl('SunOS',Sys.info()['sysname'])) set.seed(1) ``` ## Installation Install the current release from [CRAN](https://CRAN.R-project.org/package=joinet): ```{r,eval=FALSE} install.packages("joinet") ``` Or install the latest development version from [GitHub](https://github.com/rauschenberger/joinet): ```{r,eval=FALSE} #install.packages("devtools") devtools::install_github("rauschenberger/joinet") ``` ## Initialisation Load and attach the package: ```{r} library(joinet) ``` And access the [documentation](https://rauschenberger.github.io/joinet/): ```{r,eval=FALSE} ?joinet help(joinet) browseVignettes("joinet") ``` ## Simulation For `n` samples, we simulate `p` inputs (features, covariates) and `q` outputs (outcomes, responses). We assume high-dimensional inputs (`p` $\gg$ `n`) and low-dimensional outputs (`q` $\ll$ `n`). ```{r} n <- 100 q <- 2 p <- 500 ``` We simulate the `p` inputs from a multivariate normal distribution. For the mean, we use the `p`-dimensional vector `mu`, where all elements equal zero. For the covariance, we use the `p` $\times$ `p` matrix `Sigma`, where the entry in row $i$ and column $j$ equals `rho`$^{|i-j|}$. The parameter `rho` determines the strength of the correlation among the inputs, with small `rho` leading weak correlations, and large `rho` leading to strong correlations (0 < `rho` < 1). The input matrix `X` has `n` rows and `p` columns. ```{r} mu <- rep(0,times=p) rho <- 0.90 Sigma <- rho^abs(col(diag(p))-row(diag(p))) X <- MASS::mvrnorm(n=n,mu=mu,Sigma=Sigma) ``` We simulate the input-output effects from independent Bernoulli distributions. The parameter `pi` determines the number of effects, with small `pi` leading to few effects, and large `pi` leading to many effects (0 < `pi` < 1). The scalar `alpha` represents the intercept, and the `p`-dimensional vector `beta` represents the slopes. ```{r} pi <- 0.01 alpha <- 0 beta <- rbinom(n=p,size=1,prob=pi) ``` From the intercept `alpha`, the slopes `beta` and the inputs `X`, we calculate the linear predictor, the `n`-dimensional vector `eta`. Rescale the linear predictor to make the effects weaker or stronger. Set the argument `family` to `"gaussian"`, `"binomial"`, or `"poisson"` to define the distribution. The `n` times `p` matrix `Y` represents the outputs. We assume the outcomes are *positively* correlated. ```{r,results="hide"} eta <- alpha + X %*% beta eta <- 1.5*scale(eta) family <- "gaussian" if(family=="gaussian"){ mean <- eta Y <- replicate(n=q,expr=rnorm(n=n,mean=mean)) } if(family=="binomial"){ prob <- 1/(1+exp(-eta)) Y <- replicate(n=q,expr=rbinom(n=n,size=1,prob=prob)) } if(family=="poisson"){ lambda <- exp(eta) Y <- replicate(n=q,expr=rpois(n=n,lambda=lambda)) } cor(Y) ``` ## Application The function `joinet` fits univariate and multivariate regression. Set the argument `alpha.base` to 0 (ridge) or 1 (lasso). ```{r} object <- joinet(Y=Y,X=X,family=family) ``` Standard methods are available. The function `predict` returns the predicted values from the univariate (`base`) and multivariate (`meta`) models. The function `coef` returns the estimated intercepts (`alpha`) and slopes (`beta`) from the multivariate model (input-output effects). And the function `weights` returns the weights from stacking (output-output effects). ```{r,eval=FALSE} predict(object,newx=X) coef(object) weights(object) ``` The function `cv.joinet` compares the predictive performance of univariate (`base`) and multivariate (`meta`) regression by nested cross-validation. The argument `type.measure` determines the loss function. ```{r} cv.joinet(Y=Y,X=X,family=family) ``` ## Reference Armin Rauschenberger [![AR](https://info.orcid.org/wp-content/uploads/2019/11/orcid_16x16.png)](https://orcid.org/0000-0001-6498-4801) and Enrico Glaab [![EG](https://info.orcid.org/wp-content/uploads/2019/11/orcid_16x16.png)](https://orcid.org/0000-0003-3977-7469) (2021). "Predicting correlated outcomes from molecular data”. *Bioinformatics* 37(21):3889–3895. [doi: 10.1093/bioinformatics/btab576](https://doi.org/10.1093/bioinformatics/btab576). (Click [here](https://orbilu.uni.lu/bitstream/10993/47788/1/joinet.pdf) to access PDF.)