## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(kernopt) ## ----------------------------------------------------------------------------- # Simulated data mu <- 2 x <- 0:10 f <- dpois(x, mu) n <- 100 y <- sort(rpois(n, mu)) # Optimal kernel k <- 1 H <- seq((max(y) - min(y)) / 200, (max(y) - min(y)) / 2, length.out = 50) hcv_opt_k1 <- cv_bandwidth(kernel = "optimal", y, H, k) Fn_opt_k1 <- estim_kernel(kernel = "optimal", x, hcv_opt_k1, y, k) # Triangular kernel a <- 1 hcv_trg_a1 <- cv_bandwidth(kernel = "triang", y, H, a) Fn_triang_a1 <- estim_kernel(kernel = "triang", x, hcv_trg_a1, y, a) # Epanechnikov kernel H <- seq(2, 10, 1) hcv_epanech <- cv_bandwidth(kernel = "epanech", y, H) Fn_epanech <- estim_kernel(kernel = "epanech", x, hcv_epanech, y) # Binomial kernel H <- seq((max(y) - min(y)) / 500, 1, length.out = 50) hcv_bin <- cv_bandwidth(kernel = "binom", y, H) Fn_bino <- estim_kernel(kernel = "binom", x, hcv_bin, y) # Graph plot(x, f, xlab = "x", ylab = "Probability", xlim = c(0, 11), ylim = c(0, 0.35), type = "h", lwd = 2, main = paste("n=", n, sep = "")) points(x + 0.2, Fn_opt_k1, type = "h", lty = 1, col = "grey", lwd = 2) points(x + 0.4, Fn_epanech, type = "h", lty = 2, lwd = 2) points(x + 0.6, Fn_triang_a1, type = "h", lty = 2, col = "grey", lwd = 2) points(x + 0.8, Fn_bino, type = "h", lty = 3, lwd = 2) legend("topright", c("True f", "Optimal", "Epanechnikov", "Triangular", "Binomial"), lty = c(1, 1, 2, 2, 3), lwd = 2, col = c("black", "grey", "black", "grey", "black"), inset = .0 )