## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----load packages------------------------------------------------------------ # Load required packages library(tourr) library(lionfish) if (requireNamespace("flexclust")) {library(flexclust)} ## ----initialize python backend, eval = FALSE--------------------------------- # # Initialize python backend # if (check_venv()){ # init_env(env_name = "r-lionfish", virtual_env = "virtual_env") # } else if (check_conda_env()){ # init_env(env_name = "r-lionfish", virtual_env = "anaconda") # } ## ----Load and prepare flea data----------------------------------------------- # Load dataset data("flea") # Prepare objects for later us clusters_flea <- as.numeric(flea$species) flea_subspecies <- unique(flea$species) # Standardize data and calculate half_range flea <- apply(flea[,1:6], 2, function(x) (x-mean(x))/sd(x)) feature_names_flea <- colnames(flea) half_range_flea <- max(sqrt(rowSums(flea^2))) ## ----Load and prepare flea data winter activities data------------------------ if (requireNamespace("flexclust")) { # Load dataset and set seed data("winterActiv") set.seed(42) # Perform kmeans clustering clusters_winter <- stepcclust(winterActiv, k=6, nrep=20) clusters_winter <- clusters_winter@cluster # Get the names of our features feature_names_winter <- colnames(winterActiv) } ## ----1d tour------------------------------------------------------------------ guided_tour_flea_1d <- save_history(flea, tour_path=guided_tour(holes(),1)) obj_flea_1d_tour <- list(type="1d_tour", # type of display obj=guided_tour_flea_1d) # 1d tour history ## ----2d tour------------------------------------------------------------------ grand_tour_flea_2d <- save_history(flea, tour_path = grand_tour(d=2)) obj_flea_2d_tour <- list(type="2d_tour", # type of display obj=grand_tour_flea_2d) # 2d tour history ## ----scatterplot-------------------------------------------------------------- obj_flea_scatter <- list(type="scatter", # type of display obj=c("tars1", "tars2")) # x and y axis of plot ## ----histogram---------------------------------------------------------------- obj_flea_histogram <- list(type="hist", # type of display obj="head") # x axis of histogram ## ----mosaic------------------------------------------------------------------- obj_winter_mosaic <- list(type="mosaic", # type of display obj=c("subgroups_on_y")) # whether subgroups x or y axis ## ----heatmap------------------------------------------------------------------ obj_winter_heatmap <- list(type="heatmap", # type of display obj=c("Total fraction")) # initial metric ## ----categorical cluster interface-------------------------------------------- obj_winter_cat_clust <- list(type="cat_clust_interface", # type of display obj=c("Total fraction")) # initial metric ## ----interactive_tour flea---------------------------------------------------- # interactive_tour call of flea dataset. Insert plot objects of your liking. if (interactive()){ interactive_tour(data=flea, feature_names=feature_names_flea, plot_objects=list(obj_flea_2d_tour), half_range=half_range_flea, n_plot_cols=2, preselection=clusters_flea, n_subsets=3, preselection_names=flea_subspecies, display_size=5) } ## ----interactive_tour winterActiv--------------------------------------------- # interactive_tour call of winterActiv dataset. Insert plot objects of your liking. if (interactive()){ interactive_tour(data=winterActiv, feature_names=feature_names_winter, plot_objects=list(obj_winter_cat_clust), half_range=3, n_plot_cols=2, preselection=clusters_winter, n_subsets=10, display_size=5) }