## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "figures/README-", out.width = "100%", fig.height=5, fig.width=7 ) knitr::opts_chunk$set(fig.pos = "!h", fig.align="center") ## ----setup-------------------------------------------------------------------- library(lpda) ## ----------------------------------------------------------------------------- data("palmdates") names(palmdates) dim(palmdates$spectra) names(palmdates$conc) ## ----------------------------------------------------------------------------- data("RNAseq") dim(RNAseq) head(RNAseq[,1:6,1:2]) ## ----echo = TRUE, message = FALSE--------------------------------------------- group = as.factor( c(rep("Spanish",11), rep("Other",10)) ) model1 = lpda(data = palmdates$conc[,1:2], group = group ) model1 names(model1) ## ----echo = TRUE, message = FALSE--------------------------------------------- plot(palmdates$conc[,1:2], col = as.numeric(group)+1, pch = 20, main = "Model 1. Palmdates: fibre & sorbitol") abline(model1$coef[3]/model1$coef[2], -model1$coef[1]/model1$coef[2], cex = 2) legend("bottomright", c("Other","Spanish"),col = c(2,3), pch = 20, cex=0.8) ## ----------------------------------------------------------------------------- predict(model1) summary(model1) ## ----echo = TRUE, message = FALSE--------------------------------------------- model2 = lpda(data = palmdates$conc, group = group ) plot(model2, main="Model 2. Palmdates: all conc variables") ## ----echo = TRUE, message = FALSE--------------------------------------------- model3 = lpda(data = palmdates$conc, group = group, pca = TRUE, Variability = 0.7) plot(model3, PCscores = TRUE, main = "Model 3. Palmdates: PCA on conc variables") ## ----echo=FALSE--------------------------------------------------------------- X=as.matrix(palmdates$spectra) col=as.numeric(group)+1 plot(X[1,],type="l",xlab="Raman shift/cm-1",ylab="" , ylim=c(min(X),max(X)),col=col[1], main="Palmdates-Spectra") for(i in 2:21){ lines(X[i,],col=col[i]) } legend("topleft", c("Other","Spanish"),col = c(2,3),lty = 1, cex=0.8) ## ----echo = TRUE, message = FALSE--------------------------------------------- model4 = lpda(data = palmdates$spectra, group = group, pca = TRUE, Variability = 0.9) plot(model4, PCscores = TRUE, main = "Model 4. Palmdates: PCA on Spectra variables") ## ----echo = TRUE, message = FALSE--------------------------------------------- test = c(10,11,12,13) model5 = lpda(data = palmdates$spectra[-test,], group = group[-test], pca = TRUE, Variability = 0.9) predict(model5, datatest=palmdates$spectra[test,]) summary(model5, datatest=palmdates$spectra[test,], grouptest = group[test]) ## ----fig.height=3, fig.width=9, out.width = "100%"---------------------------- model.iris = lpda(iris[,-5], iris[,5]) summary(model.iris) ## ----fig.height=3, fig.width=9, out.width = "100%",echo=FALSE----------------- oldpar <- par(mfrow = c(1,3)) plot(model.iris) par(oldpar) ## ----------------------------------------------------------------------------- model.iris2 = lpda(iris[,-5], iris[,5], pca=TRUE, PC=3) summary(model.iris2) plot(model.iris2, PCscores= TRUE) ## ----eval=FALSE--------------------------------------------------------------- # lpdaCV(palmdates$spectra, group, pca = TRUE, CV = "loo") # lpdaCV(palmdates$spectra, group, pca = TRUE, CV = "ktest", ntest = 5, R = 10) ## ----echo = TRUE, results='hide', message = FALSE----------------------------- data(RNAseq) # 3-dimensional array data = RNAseq[,,3] # the third data matrix with dimensions 20 x 600 group = as.factor(rep(c("G1","G2"), each = 10)) model = lpda(data, group) # model with all the variables summary(model) ## ----echo = TRUE, message = FALSE--------------------------------------------- lpdaCV(data, group, pca = FALSE, CV = "ktest", ntest = 5) lpdaCV(data, group, pca = TRUE, CV = "ktest", ntest = 5) ## ----echo = TRUE, message = FALSE--------------------------------------------- lpdaCV(data, group, pca = TRUE, CV = "ktest", Variability = c(0.1, 0.9)) lpdaCV(data, group, pca = TRUE, CV = "ktest", PC= c(2, 10)) ## ----echo = TRUE-------------------------------------------------------------- data(RNAseq) # 3-dimensional array dim(RNAseq) group = as.factor(rep(c("G1","G2"), each = 10)) ## ----echo = TRUE-------------------------------------------------------------- model3D = lpda.3D(RNAseq, group) summary(model3D) predict(model3D) plot(model3D, mfrow=c(2,2)) ## ----echo = TRUE-------------------------------------------------------------- model3Ds2 = lpda.3D(RNAseq, group, pfac=TRUE, nfac=2) model3Ds2$MOD$mod.pfac$Rsq predict(model3Ds2) summary(model3Ds2) plot(model3Ds2, pfacscores=FALSE, main="Parafac Model") plot(model3Ds2, pfacscores=TRUE, cex=1.5, main="Parafac components") ## ----echo = TRUE-------------------------------------------------------------- lpdaCV.3D(RNAseq, group , CV = "ktest", R=5, ntest=5, pfac=TRUE, nfac=c(2,10))