## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(manymodelr) set.seed(520) # Create a simple dataset with a binary target # Here normal is a fictional target where we assume that it meets # some criterion means data("yields", package = "manymodelr") ## ----------------------------------------------------------------------------- set.seed(520) train_set<-createDataPartition(yields$normal,p=0.6,list=FALSE) valid_set<-yields[-train_set,] train_set<-yields[train_set,] ctrl<-trainControl(method="cv",number=5) m<-multi_model_1(train_set,"normal",".",c("knn","rpart"), "Accuracy",ctrl,new_data =valid_set) ## ----------------------------------------------------------------------------- m$metric ## ----------------------------------------------------------------------------- head(m$predictions) ## ----------------------------------------------------------------------------- # fit a linear model and get predictions lin_model <- multi_model_2(mtcars[1:16,],mtcars[17:32,],"mpg","wt","lm") lin_model[c("predicted", "mpg")] ## ----------------------------------------------------------------------------- multi_lin <- multi_model_2(mtcars[1:16, ], mtcars[17:32,],"mpg", "wt + disp + drat","lm") multi_lin[,c("predicted", "mpg")] ## ----------------------------------------------------------------------------- lm_model <- fit_model(mtcars,"mpg","wt","lm") lm_model ## ----------------------------------------------------------------------------- models<-fit_models(df=yields,yname=c("height", "weight"),xname="yield", modeltype="glm") ## ----------------------------------------------------------------------------- res_residuals <- lapply(models[[1]], add_model_residuals,yields) res_predictions <- lapply(models[[1]], add_model_predictions, yields, yields) # Get height predictions for the model height ~ yield head(res_predictions[[1]]) ## ----------------------------------------------------------------------------- m_models<-fit_models(df=yields,yname=c("height","weight"), xname=".",modeltype=c("lm","glm"), drop_non_numeric = TRUE) m_models[[1]] ## ----------------------------------------------------------------------------- report_model(m_models[[2]][[1]]) ## ----------------------------------------------------------------------------- extract_model_info(lm_model, "r2") ## ----------------------------------------------------------------------------- extract_model_info(lm_model, "adj_r2") ## ----------------------------------------------------------------------------- extract_model_info(lm_model, "p_value") ## ----------------------------------------------------------------------------- extract_model_info(lm_model,c("p_value","response","call","predictors"))