## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----readindata, message = FALSE---------------------------------------------- library(mars) becker09 <- na.omit(becker09) # ommiting studies with NA ## ----convert_data------------------------------------------------------------- becker09_list <- df_to_corr(becker09, variables = c('Cognitive_Performance', 'Somatic_Performance', 'Selfconfidence_Performance', 'Somatic_Cognitive', 'Selfconfidence_Cognitive', 'Selfconfidence_Somatic'), ID = 'ID') ## ----os----------------------------------------------------------------------- #olkin_siotani(becker09_list, becker09$N, type = 'simple') #olkin_siotani(becker09_list, becker09$N, type = 'average') olkin_siotani(becker09_list, becker09$N, type = 'weighted') ## ----prep_data, eval = FALSE-------------------------------------------------- # mars(data = becker09, studyID = 'ID', # effectID = 'numID', sample_size = 'N', # effectsize_type = 'cor', # estimation_method = 'FE', # varcov_type = 'weighted', # variable_names = c('Cognitive_Performance', 'Somatic_Performance', # 'Selfconfidence_Performance', # 'Somatic_Cognitive', # 'Selfconfidence_Cognitive', # 'Selfconfidence_Somatic')) |> # summary() ## ----random-effect------------------------------------------------------------ model_out_random <- mars(data = becker09, studyID = 'ID', effectID = 'numID', sample_size = 'N', effectsize_type = 'cor', varcov_type = 'weighted', variable_names = c('Cognitive_Performance', 'Somatic_Performance', 'Selfconfidence_Performance', 'Somatic_Cognitive', 'Selfconfidence_Cognitive', 'Selfconfidence_Somatic')) summary(model_out_random) ## ----model_path--------------------------------------------------------------- model <- "## Regression paths Performance ~ Cognitive + Somatic + Selfconfidence Selfconfidence ~ Cognitive + Somatic " mars(data = becker09, studyID = 'ID', effectID = 'numID', sample_size = 'N', effectsize_type = 'cor', varcov_type = 'weighted', variable_names = c('Cognitive_Performance', 'Somatic_Performance', 'Selfconfidence_Performance', 'Somatic_Cognitive', 'Selfconfidence_Cognitive', 'Selfconfidence_Somatic')) |> path_model(model = model) |> summary() ## ----team--------------------------------------------------------------------- becker09_T <- subset(becker09, becker09$Team == "T") ## ----prep_data2--------------------------------------------------------------- mars(data = becker09_T, studyID = 'ID', effectID = 'numID', sample_size = 'N', effectsize_type = 'cor', varcov_type = 'weighted', variable_names = c('Cognitive_Performance', 'Somatic_Performance', 'Selfconfidence_Performance', 'Somatic_Cognitive', 'Selfconfidence_Cognitive', 'Selfconfidence_Somatic')) |> summary() # random_model2 <- fit_model(data = input_metafor2, effect_size = 'yi', # var_cor = 'V', moderators = ~ -1 + factor(outcome), # random_params = ~ factor(outcome) | factor(study)) ## ----model_path2-------------------------------------------------------------- model <- "## Regression paths Performance ~ Cognitive + Somatic + Selfconfidence Selfconfidence ~ Cognitive + Somatic " mars(data = becker09_T, studyID = 'ID', effectID = 'numID', sample_size = 'N', effectsize_type = 'cor', varcov_type = 'weighted', variable_names = c('Cognitive_Performance', 'Somatic_Performance', 'Selfconfidence_Performance', 'Somatic_Cognitive', 'Selfconfidence_Cognitive', 'Selfconfidence_Somatic')) |> path_model(model = model) |> summary() ## ----Indiv-------------------------------------------------------------------- becker09_I <- subset(becker09, becker09$Team == "I") ## ----prep_data3--------------------------------------------------------------- mars(data = becker09_I, studyID = 'ID', effectID = 'numID', sample_size = 'N', effectsize_type = 'cor', varcov_type = 'weighted', variable_names = c('Cognitive_Performance', 'Somatic_Performance', 'Selfconfidence_Performance', 'Somatic_Cognitive', 'Selfconfidence_Cognitive', 'Selfconfidence_Somatic')) |> summary() # random_model3 <- fit_model(data = input_metafor3, effect_size = 'yi', # var_cor = 'V', moderators = ~ -1 + factor(outcome), # random_params = ~ factor(outcome) | factor(study)) ## ----model_path3-------------------------------------------------------------- model <- "## Regression paths Performance ~ Cognitive + Somatic + Selfconfidence Selfconfidence ~ Cognitive + Somatic " mars(data = becker09_I, studyID = 'ID', effectID = 'numID', sample_size = 'N', effectsize_type = 'cor', varcov_type = 'weighted', variable_names = c('Cognitive_Performance', 'Somatic_Performance', 'Selfconfidence_Performance', 'Somatic_Cognitive', 'Selfconfidence_Cognitive', 'Selfconfidence_Somatic')) |> path_model(model = model) |> summary() ## ----pipe, eval = FALSE------------------------------------------------------- # # partial corr matrix # part_cor <- round(corpcor::vec2sm(model_out_random$beta_r),3) # diag(part_cor) <- 1 # part_cor # # # var-cov matrix of partials # Psy <- model_out_random$varcov_beta # round(var_path(model_out_random$beta_r, Psy, type = 'pcor'), 4) ## ----partial, eval = FALSE---------------------------------------------------- # #--------------------------------------------------------------------- # # Create a data set with 8 complete studies # #--------------------------------------------------------------------- # R <- becker09_list # R$"6" <- NULL # R$"17" <- NULL # n <- becker09$N[c(-3, -5)] # #------------------------------------------------------------------ # # first replace NA by zeros # RR <- R # redifine list # # PR <- lapply(RR, cor2pcor) # pr <- unlist(lapply(PR, '[[', 4)) # var_pr <- (1-pr^2)^2 / (n - 3 -1) # # rma.uni(pr, var_pr)