## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo = FALSE------------------------------------------------------------- options(crayon.enabled = FALSE, cli.num_colors = 0) ## ----eval = FALSE------------------------------------------------------------- # # load package # library(metasnf) # # # generate data_list # dl <- data_list( # list(cort_t, "cort_t", "neuroimaging", "continuous"), # list(cort_sa, "cort_sa", "neuroimaging", "continuous"), # list(subc_v, "subc_v", "neuroimaging", "continuous"), # list(income, "income", "demographics", "continuous"), # list(pubertal, "pubertal", "demographics", "continuous"), # uid = "unique_id" # ) # # # build SNF config # set.seed(42) # sc <- snf_config( # dl = dl, # n_solutions = 15 # ) # # # collect similarity matrices and solutions data frame from batch_snf # sol_df <- batch_snf( # dl = dl, # sc, # return_sim_mats = TRUE # ) # # # calculate Davies-Bouldin indices # davies_bouldin_indices <- calculate_db_indices(sol_df) # # # calculate Dunn indices # dunn_indices <- calculate_dunn_indices(sol_df) # # # calculate silhouette scores # silhouette_scores <- calculate_silhouettes(sol_df) # # # plot the silhouette scores of the first solutions # plot(silhouette_scores[[1]])