## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) # Load Library library(mlmpower) # Set seed set.seed(981723) # Load Cache powersim1 <- readRDS('powersim1.rds') powersim2 <- readRDS('powersim2.rds') powersim3 <- readRDS('powersim3.rds') ## ----------------------------------------------------------------------------- example1 <- ( effect_size( icc = c(.10, .25), within = .065, between = .065, product = .01, random_slope = .03 ) + outcome('y', mean = 50, sd = 10) + within_predictor('x1', icc = 0, weight = .80) + within_predictor('x2', weight = .20) + between_predictor('z1', weight = .80) + between_predictor('z2', weight = .20) + product('x1','z1', weight = 1) + random_slope('x1', weight = 1) ) ## ----------------------------------------------------------------------------- example1 <- ( effect_size( icc = c(.10, .25), within = .065, between = .065, product = .01, random_slope = .03 ) + outcome('y', mean = 50, sd = 10) + within_predictor('x1', icc = 0, weight = .80) + within_predictor('x2', weight = .20) + between_predictor('z1', weight = .80) + between_predictor('z2', weight = .20) + product('x1','z1', weight = 1) + random_slope('x1', weight = 1) + correlations( within = random(0.1, 0.3), between = random(0.1, 0.3), randeff = random(0.1, 0.3) ) ) ## ----------------------------------------------------------------------------- summary(example1) ## ----eval = FALSE------------------------------------------------------------- # # Set seed for replicable results # set.seed(2318971) # # # Run Power Analysis # powersim1 <- # power_analysis( # model = example1, # replications = 2000, # n_between = c(30, 60, 90, 120), # n_within = c(10, 20, 30) # ) ## ----------------------------------------------------------------------------- summary(powersim1) ## ----------------------------------------------------------------------------- example2 <- ( effect_size( icc = c(.40, .60), within = .13, between = .065, product = .03, random_slope = .10 ) + outcome('y', mean = 50, sd = 10) + within_time_predictor('x1', weight = .50, values = 0:4) + within_predictor('x2', weight = .25) + within_predictor('x3', weight = .25) + between_binary_predictor('z1', proportion = .50, weight = 0) + between_predictor('z2', weight = .50) + between_predictor('z3', weight = .50) + product('x1','z1', weight = 1) + random_slope('x1', weight = 1) + correlations( within = random(.20, .40), between = random(.10, .30), randeff = random(.30, .50) ) ) ## ----------------------------------------------------------------------------- summary(example2) ## ----eval = FALSE------------------------------------------------------------- # # Set seed for replicable results # set.seed(12379) # # # Run Power Analysis # powersim2 <- # power_analysis( # model = example2, # replications = 2000, # n_between = c(50, 60, 70, 80, 90, 100), # n_within = 5 # ) ## ----------------------------------------------------------------------------- summary(powersim2) ## ----------------------------------------------------------------------------- example3 <- ( effect_size( icc = c(.10, .25), within = .18, between = .038, ) + outcome('y') + within_predictor('x1', weight = .70) + within_predictor('x2', weight = .10) + within_predictor('x3', weight = .10) + within_predictor('x4', weight = .10) + between_binary_predictor('z1', proportion = .50, weight = 1) ) ## ----------------------------------------------------------------------------- example3 <- ( example3 + correlations( within = random(0.1, 0.3), between = random(0.1, 0.3) ) ) ## ----------------------------------------------------------------------------- summary(example3) ## ----eval = FALSE------------------------------------------------------------- # # Set seed for replicable results # set.seed(981723) # # # Run Power Analysis # powersim3 <- # power_analysis( # model = example3, # replications = 2000, # n_between = c(30, 60, 90, 120), # n_within = c(15, 30) # ) ## ----------------------------------------------------------------------------- summary(powersim3)