## ----setup-------------------------------------------------------------------- # nolint start library(mlexperiments) library(mlsurvlrnrs) ## ----------------------------------------------------------------------------- dataset <- survival::colon |> data.table::as.data.table() |> na.omit() dataset <- dataset[get("etype") == 2, ] surv_cols <- c("status", "time", "rx") feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] cat_vars <- c("sex", "obstruct", "perfor", "adhere", "differ", "extent", "surg", "node4", "rx") ## ----------------------------------------------------------------------------- seed <- 123 if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) { # on cran ncores <- 2L } else { ncores <- ifelse( test = parallel::detectCores() > 4, yes = 4L, no = ifelse( test = parallel::detectCores() < 2L, yes = 1L, no = parallel::detectCores() ) ) } options("mlexperiments.bayesian.max_init" = 10L) ## ----------------------------------------------------------------------------- split_vector <- splitTools::multi_strata( df = dataset[, .SD, .SDcols = surv_cols], strategy = "kmeans", k = 4 ) data_split <- splitTools::partition( y = split_vector, p = c(train = 0.7, test = 0.3), type = "stratified", seed = seed ) train_x <- model.matrix( ~ -1 + ., dataset[ data_split$train, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2]) ] ) train_y <- survival::Surv( event = (dataset[data_split$train, get("status")] |> as.character() |> as.integer()), time = dataset[data_split$train, get("time")], type = "right" ) split_vector_train <- splitTools::multi_strata( df = dataset[data_split$train, .SD, .SDcols = surv_cols], strategy = "kmeans", k = 4 ) test_x <- model.matrix( ~ -1 + ., dataset[data_split$test, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])] ) test_y <- survival::Surv( event = (dataset[data_split$test, get("status")] |> as.character() |> as.integer()), time = dataset[data_split$test, get("time")], type = "right" ) ## ----------------------------------------------------------------------------- fold_list <- splitTools::create_folds( y = split_vector_train, k = 3, type = "stratified", seed = seed ) ## ----------------------------------------------------------------------------- # required learner arguments, not optimized learner_args <- NULL # set arguments for predict function and performance metric, # required for mlexperiments::MLCrossValidation and # mlexperiments::MLNestedCV predict_args <- NULL performance_metric <- c_index performance_metric_args <- NULL return_models <- FALSE # required for grid search and initialization of bayesian optimization parameter_grid <- expand.grid( alpha = seq(0, 1, 0.05) ) # reduce to a maximum of 10 rows if (nrow(parameter_grid) > 10) { set.seed(123) sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE) parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows) } # required for bayesian optimization parameter_bounds <- list( alpha = c(0., 1.) ) optim_args <- list( iters.n = ncores, kappa = 3.5, acq = "ucb" ) ## ----------------------------------------------------------------------------- tuner <- mlexperiments::MLTuneParameters$new( learner = LearnerSurvGlmnetCox$new(), strategy = "grid", ncores = ncores, seed = seed ) tuner$parameter_grid <- parameter_grid tuner$learner_args <- learner_args tuner$split_type <- "stratified" tuner$split_vector <- split_vector_train tuner$set_data( x = train_x, y = train_y ) tuner_results_grid <- tuner$execute(k = 3) #> #> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%) #> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%) #> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%) #> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%) #> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%) #> Parameter settings [==========================================================================================================================================] 10/10 (100%) head(tuner_results_grid) #> setting_id metric_optim_mean lambda alpha #> 1: 1 0.6420939 0.1571721 0.70 #> 2: 2 0.6473427 0.1222450 0.90 #> 3: 3 0.6420939 0.1692623 0.65 #> 4: 4 0.6503151 0.9134093 0.10 #> 5: 5 0.6448394 0.2227701 0.45 #> 6: 6 0.6516264 2.0049311 0.05 ## ----------------------------------------------------------------------------- tuner <- mlexperiments::MLTuneParameters$new( learner = LearnerSurvGlmnetCox$new(), strategy = "bayesian", ncores = ncores, seed = seed ) tuner$parameter_grid <- parameter_grid tuner$parameter_bounds <- parameter_bounds tuner$learner_args <- learner_args tuner$optim_args <- optim_args tuner$split_type <- "stratified" tuner$split_vector <- split_vector_train tuner$set_data( x = train_x, y = train_y ) tuner_results_bayesian <- tuner$execute(k = 3) #> #> Registering parallel backend using 4 cores. head(tuner_results_bayesian) #> Epoch setting_id alpha gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean lambda errorMessage #> 1: 0 1 0.70 NA FALSE TRUE 1.186 0.6420939 0.6420939 0.1571721 NA #> 2: 0 2 0.90 NA FALSE TRUE 1.157 0.6473427 0.6473427 0.1222450 NA #> 3: 0 3 0.65 NA FALSE TRUE 1.163 0.6420939 0.6420939 0.1692623 NA #> 4: 0 4 0.10 NA FALSE TRUE 1.177 0.6503151 0.6503151 0.9134093 NA #> 5: 0 5 0.45 NA FALSE TRUE 0.240 0.6448394 0.6448394 0.2227701 NA #> 6: 0 6 0.05 NA FALSE TRUE 0.286 0.6516264 0.6516264 2.0049311 NA ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLCrossValidation$new( learner = LearnerSurvGlmnetCox$new(), fold_list = fold_list, ncores = ncores, seed = seed ) validator$learner_args <- tuner$results$best.setting[-1] validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- return_models validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> CV fold: Fold2 #> #> CV fold: Fold3 head(validator_results) #> fold performance alpha lambda #> 1: Fold1 0.5959883 0.03836977 2.612644 #> 2: Fold2 0.6688831 0.03836977 2.612644 #> 3: Fold3 0.6899724 0.03836977 2.612644 ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLNestedCV$new( learner = LearnerSurvGlmnetCox$new(), strategy = "grid", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = seed ) validator$parameter_grid <- parameter_grid validator$learner_args <- learner_args validator$split_type <- "stratified" validator$split_vector <- split_vector_train validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- return_models validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%) #> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%) #> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%) #> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%) #> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%) #> Parameter settings [==========================================================================================================================================] 10/10 (100%) #> CV fold: Fold2 #> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%) #> #> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%) #> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%) #> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%) #> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%) #> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%) #> Parameter settings [==========================================================================================================================================] 10/10 (100%) #> CV fold: Fold3 #> CV progress [===================================================================================================================================================] 3/3 (100%) #> #> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%) #> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%) #> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%) #> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%) #> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%) #> Parameter settings [==========================================================================================================================================] 10/10 (100%) head(validator_results) #> fold performance lambda alpha #> 1: Fold1 0.5881450 1.2565031 0.05 #> 2: Fold2 0.6187568 0.4969800 0.10 #> 3: Fold3 0.6882968 0.1076019 0.05 ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLNestedCV$new( learner = LearnerSurvGlmnetCox$new(), strategy = "bayesian", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = 312 ) validator$parameter_grid <- parameter_grid validator$learner_args <- learner_args validator$split_type <- "stratified" validator$split_vector <- split_vector_train validator$parameter_bounds <- parameter_bounds validator$optim_args <- optim_args validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- TRUE validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> Registering parallel backend using 4 cores. #> #> CV fold: Fold2 #> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%) #> #> Registering parallel backend using 4 cores. #> #> CV fold: Fold3 #> CV progress [===================================================================================================================================================] 3/3 (100%) #> #> Registering parallel backend using 4 cores. head(validator_results) #> fold performance alpha lambda #> 1: Fold1 0.5921167 0.001528976 28.32153046 #> 2: Fold2 0.6033518 0.450000000 0.05758351 #> 3: Fold3 0.6908924 0.150000000 0.40290596 ## ----------------------------------------------------------------------------- train_x_coxph <- data.matrix( dataset[ data_split$train, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2]) ] ) test_x_coxph <- data.matrix( dataset[ data_split$test, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2]) ] ) ## ----------------------------------------------------------------------------- validator_coxph <- mlexperiments::MLCrossValidation$new( learner = LearnerSurvCoxPHCox$new(), fold_list = fold_list, ncores = ncores, seed = seed ) validator_coxph$performance_metric <- performance_metric validator_coxph$performance_metric_args <- performance_metric_args validator_coxph$return_models <- TRUE validator_coxph$set_data( x = train_x_coxph, y = train_y, cat_vars = cat_vars ) validator_coxph_results <- validator_coxph$execute() #> #> CV fold: Fold1 #> Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. #> #> CV fold: Fold2 #> Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. #> #> CV fold: Fold3 #> Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. head(validator_coxph_results) #> fold performance #> 1: Fold1 0.5895801 #> 2: Fold2 0.5992298 #> 3: Fold3 0.6732488 ## ----------------------------------------------------------------------------- mlexperiments::validate_fold_equality( experiments = list(validator, validator_coxph) ) ## ----------------------------------------------------------------------------- preds_glmnet <- mlexperiments::predictions( object = validator, newdata = test_x ) preds_coxph <- mlexperiments::predictions( object = validator_coxph, newdata = test_x_coxph ) ## ----------------------------------------------------------------------------- perf_glmnet <- mlexperiments::performance( object = validator, prediction_results = preds_glmnet, y_ground_truth = test_y ) perf_glmnet #> model performance #> 1: Fold1 0.6660022 #> 2: Fold2 0.6846061 #> 3: Fold3 0.6636560 ## ----------------------------------------------------------------------------- perf_coxph <- mlexperiments::performance( object = validator_coxph, prediction_results = preds_coxph, y_ground_truth = test_y ) perf_coxph #> model performance #> 1: Fold1 0.6758025 #> 2: Fold2 0.6782526 #> 3: Fold3 0.6437025 ## ----include=FALSE------------------------------------------------------------ # nolint end