## ----setup-------------------------------------------------------------------- # nolint start library(mlexperiments) library(mlsurvlrnrs) ## ----------------------------------------------------------------------------- dataset <- survival::colon |> data.table::as.data.table() |> na.omit() dataset <- dataset[get("etype") == 2, ] surv_cols <- c("status", "time", "rx") feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] cat_vars <- c("sex", "obstruct", "perfor", "adhere", "differ", "extent", "surg", "node4", "rx") ## ----------------------------------------------------------------------------- seed <- 123 if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) { # on cran ncores <- 2L } else { ncores <- ifelse( test = parallel::detectCores() > 4, yes = 4L, no = ifelse( test = parallel::detectCores() < 2L, yes = 1L, no = parallel::detectCores() ) ) } options("mlexperiments.bayesian.max_init" = 10L) ## ----------------------------------------------------------------------------- split_vector <- splitTools::multi_strata( df = dataset[, .SD, .SDcols = surv_cols], strategy = "kmeans", k = 4 ) data_split <- splitTools::partition( y = split_vector, p = c(train = 0.7, test = 0.3), type = "stratified", seed = seed ) train_x <- data.matrix( dataset[ data_split$train, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2]) ] ) train_y <- survival::Surv( event = (dataset[data_split$train, get("status")] |> as.character() |> as.integer()), time = dataset[data_split$train, get("time")], type = "right" ) split_vector_train <- splitTools::multi_strata( df = dataset[data_split$train, .SD, .SDcols = surv_cols], strategy = "kmeans", k = 4 ) test_x <- data.matrix( dataset[data_split$test, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])] ) test_y <- survival::Surv( event = (dataset[data_split$test, get("status")] |> as.character() |> as.integer()), time = dataset[data_split$test, get("time")], type = "right" ) ## ----------------------------------------------------------------------------- fold_list <- splitTools::create_folds( y = split_vector_train, k = 3, type = "stratified", seed = seed ) ## ----------------------------------------------------------------------------- # required learner arguments, not optimized learner_args <- NULL # set arguments for predict function and performance metric, # required for mlexperiments::MLCrossValidation and # mlexperiments::MLNestedCV predict_args <- NULL performance_metric <- c_index performance_metric_args <- NULL return_models <- FALSE # required for grid search and initialization of bayesian optimization parameter_grid <- expand.grid( num.trees = seq(500, 1000, 500), mtry = seq(2, 6, 2), min.node.size = seq(1, 9, 4), max.depth = seq(1, 9, 4), sample.fraction = seq(0.5, 0.8, 0.3) ) # reduce to a maximum of 10 rows if (nrow(parameter_grid) > 10) { set.seed(123) sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE) parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows) } # required for bayesian optimization parameter_bounds <- list( num.trees = c(100L, 1000L), mtry = c(2L, 9L), min.node.size = c(1L, 20L), max.depth = c(1L, 40L), sample.fraction = c(0.3, 1.) ) optim_args <- list( iters.n = ncores, kappa = 3.5, acq = "ucb" ) ## ----------------------------------------------------------------------------- tuner <- mlexperiments::MLTuneParameters$new( learner = LearnerSurvRangerCox$new(), strategy = "grid", ncores = ncores, seed = seed ) tuner$parameter_grid <- parameter_grid tuner$learner_args <- learner_args tuner$split_type <- "stratified" tuner$split_vector <- split_vector_train tuner$set_data( x = train_x, y = train_y, cat_vars = cat_vars ) tuner_results_grid <- tuner$execute(k = 3) #> #> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%) #> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%) #> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%) #> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%) #> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%) #> Parameter settings [==========================================================================================================================================] 10/10 (100%) head(tuner_results_grid) #> setting_id metric_optim_mean num.trees mtry min.node.size max.depth sample.fraction #> 1: 1 0.6720841 500 2 9 5 0.5 #> 2: 1 0.6720841 500 2 9 5 0.5 #> 3: 1 0.6720841 500 2 9 5 0.5 #> 4: 1 0.6720841 500 2 9 5 0.5 #> 5: 1 0.6720841 500 2 9 5 0.5 #> 6: 1 0.6720841 500 2 9 5 0.5 ## ----------------------------------------------------------------------------- tuner <- mlexperiments::MLTuneParameters$new( learner = LearnerSurvRangerCox$new(), strategy = "bayesian", ncores = ncores, seed = seed ) tuner$parameter_grid <- parameter_grid tuner$parameter_bounds <- parameter_bounds tuner$learner_args <- learner_args tuner$optim_args <- optim_args tuner$split_type <- "stratified" tuner$split_vector <- split_vector_train tuner$set_data( x = train_x, y = train_y, cat_vars = cat_vars ) tuner_results_bayesian <- tuner$execute(k = 3) #> #> Registering parallel backend using 4 cores. head(tuner_results_bayesian) #> Epoch setting_id num.trees mtry min.node.size max.depth sample.fraction gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean errorMessage #> 1: 0 1 500 2 9 5 0.5 NA FALSE TRUE 6.461 0.6693199 0.6693199 NA #> 2: 0 2 500 2 5 5 0.8 NA FALSE TRUE 7.056 0.6688048 0.6688048 NA #> 3: 0 3 500 4 9 9 0.5 NA FALSE TRUE 7.871 0.6661409 0.6661409 NA #> 4: 0 4 1000 2 9 1 0.5 NA FALSE TRUE 11.942 0.6663512 0.6663512 NA #> 5: 0 5 500 2 9 1 0.8 NA FALSE TRUE 5.117 0.6654894 0.6654894 NA #> 6: 0 6 1000 6 1 9 0.5 NA FALSE TRUE 15.607 0.6621016 0.6621016 NA ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLCrossValidation$new( learner = LearnerSurvRangerCox$new(), fold_list = fold_list, ncores = ncores, seed = seed ) validator$learner_args <- tuner$results$best.setting[-1] validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- return_models validator$set_data( x = train_x, y = train_y, cat_vars = cat_vars ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> CV fold: Fold2 #> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%) #> #> CV fold: Fold3 #> CV progress [===================================================================================================================================================] 3/3 (100%) #> head(validator_results) #> fold performance num.trees mtry min.node.size max.depth sample.fraction #> 1: Fold1 0.6469363 1000 2 9 9 0.5 #> 2: Fold2 0.6949011 1000 2 9 9 0.5 #> 3: Fold3 0.6781061 1000 2 9 9 0.5 ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLNestedCV$new( learner = LearnerSurvRangerCox$new(), strategy = "grid", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = seed ) validator$parameter_grid <- parameter_grid validator$learner_args <- learner_args validator$split_type <- "stratified" validator$split_vector <- split_vector_train validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- return_models validator$set_data( x = train_x, y = train_y, cat_vars = cat_vars ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%) #> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%) #> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%) #> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%) #> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%) #> Parameter settings [==========================================================================================================================================] 10/10 (100%) #> CV fold: Fold2 #> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%) #> #> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%) #> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%) #> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%) #> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%) #> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%) #> Parameter settings [==========================================================================================================================================] 10/10 (100%) #> CV fold: Fold3 #> CV progress [===================================================================================================================================================] 3/3 (100%) #> #> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%) #> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%) #> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%) #> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%) #> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%) #> Parameter settings [==========================================================================================================================================] 10/10 (100%) head(validator_results) #> fold performance num.trees mtry min.node.size max.depth sample.fraction #> 1: Fold1 0.6455262 500 2 5 9 0.5 #> 2: Fold2 0.6949011 1000 2 9 9 0.5 #> 3: Fold3 0.6714574 500 2 9 5 0.5 ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLNestedCV$new( learner = LearnerSurvRangerCox$new(), strategy = "bayesian", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = 312 ) validator$parameter_grid <- parameter_grid validator$learner_args <- learner_args validator$split_type <- "stratified" validator$split_vector <- split_vector_train validator$parameter_bounds <- parameter_bounds validator$optim_args <- optim_args validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- TRUE validator$set_data( x = train_x, y = train_y, cat_vars = cat_vars ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> Registering parallel backend using 4 cores. #> #> CV fold: Fold2 #> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%) #> #> Registering parallel backend using 4 cores. #> #> CV fold: Fold3 #> CV progress [===================================================================================================================================================] 3/3 (100%) #> #> Registering parallel backend using 4 cores. head(validator_results) #> fold performance num.trees mtry min.node.size max.depth sample.fraction #> 1: Fold1 0.6468081 1000 2 9 9 0.5000000 #> 2: Fold2 0.6940663 1000 2 9 9 0.5000000 #> 3: Fold3 0.6639019 796 2 1 2 0.8221974 ## ----------------------------------------------------------------------------- preds_ranger <- mlexperiments::predictions( object = validator, newdata = test_x ) ## ----------------------------------------------------------------------------- perf_ranger <- mlexperiments::performance( object = validator, prediction_results = preds_ranger, y_ground_truth = test_y ) perf_ranger #> model performance #> 1: Fold1 0.6515910 #> 2: Fold2 0.6600127 #> 3: Fold3 0.6558614 ## ----include=FALSE------------------------------------------------------------ # nolint end