## ----setup, warning=FALSE,message=FALSE--------------------------------------- library(netrankr) library(igraph) ## ----indirstandard------------------------------------------------------------ data("dbces11") g <- dbces11 # adjacency A <- indirect_relations(g, type = "adjacency") # shortest path distances D <- indirect_relations(g, type = "dist_sp") # dyadic dependencies (as used in betweenness centrality) B <- indirect_relations(g, type = "depend_sp") # resistance distance (as used in information centrality) R <- indirect_relations(g, type = "dist_resist") # Logarithmic forest distance (parametrized family of distances) LF <- indirect_relations(g, type = "dist_lf", lfparam = 1) # Walk distance (parametrized family of distances) WD <- indirect_relations(g, type = "dist_walk", dwparam = 0.001) # Random walk distance WD <- indirect_relations(g, type = "dist_rwalk") # See ?indirect_relations for further options ## ----example_mat-------------------------------------------------------------- D B ## ----indirwalks--------------------------------------------------------------- # count the limit proportion of walks (used for eigenvector centrality) W <- indirect_relations(g, type = "walks", FUN = walks_limit_prop) # count the number of walks of arbitrary length between nodes, weighted by # the inverse factorial of their length (used for subgraph centrality) S <- indirect_relations(g, type = "walks", FUN = walks_exp) ## ----indirparam--------------------------------------------------------------- # Calculate dist(s,t)^-alpha D <- indirect_relations(g, type = "dist_sp", FUN = dist_dpow, alpha = 2) ## ----own_func----------------------------------------------------------------- dist_integration <- function(x) { x <- 1 - (x - 1) / max(x) } D <- indirect_relations(g, type = "dist_sp", FUN = dist_integration)