## ----echo = FALSE, message = FALSE-------------------------------------------- knitr::opts_chunk$set(collapse = T, comment = "#>") library(purrr) library(assertthat) library(neuroim2) options(mc.cores=1) ## ----------------------------------------------------------------------------- library(purrr) library(ggplot2) file_name <- system.file("extdata", "global_mask_v4.nii", package="neuroim2") vol <- read_vol(file_name) mask.idx <- which(vol>0) vol2 <- vol vol2[mask.idx] <- runif(length(mask.idx)) comp <- conn_comp(vol2, threshold=.8) plot(comp$index, zlevels=seq(1,25,by=3), cmap=rainbow(255)) ## ----------------------------------------------------------------------------- mvals <- vol2 %>% split_clusters(comp$index) %>% map_dbl( ~ mean(.)) ## ----------------------------------------------------------------------------- sdvol <- vol %>% searchlight(radius=5, eager=TRUE) %>% map_dbl( ~ sd(.)) sdvol <- NeuroVol(sdvol, space=space(vol), indices=which(vol!=0)) plot(sdvol, cmap=rainbow(255)) ## ----------------------------------------------------------------------------- k <- 12 knnfvol <- vol2 %>% searchlight(radius=6, eager=TRUE) %>% map_dbl(function(x) { ind <- order((x[x@center_index] - values(x)^2))[1:k] mean(x[ind]) mean(x) }) %>% NeuroVol(space=space(vol), indices=which(vol!=0)) plot(knnfvol, cmap=rainbow(255)) ## ----------------------------------------------------------------------------- avgvol <- vol %>% searchlight_coords(radius=12, nonzero=TRUE) %>% map_dbl(function(x) { vals <- vol[x] mean(vals[vals!=0]) }) %>% NeuroVol(space=space(vol), indices=which(vol!=0)) plot(avgvol, cmap=rainbow(2), zlevels=seq(1,25,by=3)) ## ----------------------------------------------------------------------------- slice_means <- vol %>% slices %>% map_dbl(~ mean(.)) plot(slice_means, type='l', ylab="mean intensity", xlab="slice number") ## ----------------------------------------------------------------------------- vec <- concat(vol,vol,vol,vol,vol) vec mean_vec <- vec %>% vols %>% map_dbl(~ mean(.)) sd_vec <- vec %>% vols %>% map_dbl(~ sd(.)) assert_that(length(mean_vec) == dim(vec)[4]) assert_that(length(sd_vec) == dim(vec)[4]) ## ----------------------------------------------------------------------------- vec <- concat(vol,vol,vol,vol,vol) vec mean_vol <- vec %>% vectors() %>% map_dbl(~ mean(.)) %>% NeuroVol(., space=space(vol)) assert_that(all(dim(mean_vol) == dim(vol)))