## ----nhanestables, eval=FALSE------------------------------------------------- # library(nhanesA) # nhanesTables('EXAM', 2005) ## ----nhanestables1, echo=FALSE------------------------------------------------ df <- data.frame(matrix(1,nrow=13,ncol=2)) names(df) <- c('Data.File.Name', 'Data.File.Description') df[1,] <- list('BPX_D', 'Blood Pressure') df[2,] <- list('BMX_D', 'Body Measures') df[3,] <- list('AUX_D', 'Audiometry') df[4,] <- list('AUXTYM_D', 'Audiometry - Tympanometry') df[5,] <- list('DXXFEM_D', 'Dual Energy X-ray Absorptiometry - Femur') df[6,] <- list('OPXFDT_D', 'Ophthalmology - Frequency Doubling Technology') df[7,] <- list('OHX_D', 'Oral Health') df[8,] <- list('PAXRAW_D', 'Physical Activity Monitor') df[9,] <- list('VIX_D', 'Vision') df[10,] <- list('DXXAG_D', 'Dual Energy X-ray Absorptiometry - Android/Gynoid') df[11,] <- list( 'AUXAR_D', 'Audiometry - Acoustic Reflex') df[12,] <- list('OPXRET_D', 'Ophthalmology - Retinal Imaging') df[13,] <- list('DXXSPN_D', 'Dual Energy X-ray Absorptiometry - Spine') df ## ----nhanestablevars, eval=FALSE---------------------------------------------- # nhanesTableVars('EXAM', 'BMX_D') ## ----nhanestablevars1, echo=FALSE--------------------------------------------- df <- data.frame(matrix(1,nrow=27,ncol=2)) names(df) <- c('Variable.Name', 'Variable.Description') df[1,] <- list('BMDSTATS', 'Body Measures Component status Code') df[2,] <- list('BMIARMC', 'Arm Circumference Comment') df[3,] <- list('BMIARML', 'Upper Arm Length Comment') df[4,] <- list('BMICALF', ' Maximal Calf Comment') df[5,] <- list('BMIHEAD', 'Head Circumference Comment') df[6,] <- list('BMIHT', 'Standing Height Comment') df[7,] <- list('BMILEG', 'Upper Leg Length Comment') df[8,] <- list('BMIRECUM', 'Recumbent Length Comment') df[9,] <- list('BMISUB', 'Subscapular Skinfold Comment') df[10,] <- list('BMITHICR', 'Thigh Circumference Comment') df[11,] <- list('BMITRI', 'Triceps Skinfold Comment') df[12,] <- list('BMIWAIST', 'Waist Circumference Comment') df[13,] <- list('BMIWT', 'Weight Comment') df[14,] <- list('BMXARMC', 'Arm Circumference (cm)') df[15,] <- list('BMXARML', 'Upper Arm Length (cm)') df[16,] <- list('BMXBMI', 'Body Mass Index (kg/m**2)') df[17,] <- list('BMXCALF', 'Maximal Calf Circumference (cm)') df[18,] <- list('BMXHEAD', 'Head Circumference (cm)') df[19,] <- list('BMXHT', 'Standing Height (cm)') df[20,] <- list('BMXLEG', 'Upper Leg Length (cm)') df[21,] <- list('BMXRECUM', 'Recumbent Length (cm)') df[22,] <- list('BMXSUB', 'Subscapular Skinfold (mm)') df[23,] <- list('BMXTHICR', 'Thigh Circumference (cm)') df[24,] <- list('BMXTRI', 'Triceps Skinfold (mm)') df[25,] <- list('BMXWAIST', 'Waist Circumference (cm)') df[26,] <- list('BMXWT', 'Weight (kg)') df[27,] <- list('SEQN', 'Respondent sequence number.') df ## ----nhanes, eval=FALSE------------------------------------------------------- # bmx_d <- nhanes('BMX_D') # demo_d <- nhanes('DEMO_D') ## ----bmd1, eval=FALSE--------------------------------------------------------- # bmx_demo <- merge(demo_d, bmx_d) # options(digits=4) # select_cols <- c('RIAGENDR', 'BMXHT', 'BMXWT', 'BMXLEG', 'BMXCALF', 'BMXTHICR') # print(bmx_demo[5:8,select_cols], row.names=FALSE) ## ----bmx4, echo=FALSE--------------------------------------------------------- df <- data.frame(matrix(1,nrow=4,ncol=6)) names(df) <- c('RIAGENDR', 'BMXHT', 'BMXWT', 'BMXLEG', 'BMXCALF', 'BMXTHICR') df[1,] <- list('Female', 156.0, 75.2, 38.0, 36.6, 53.7) df[2,] <- list('Male', 167.6, 69.5, 40.4, 35.6, 48.0) df[3,] <- list('Female', 163.7, 45.0, 39.2, 31.7, 41.3) df[4,] <- list('Male', 182.4, 101.9, 41.5, 42.6, 50.5) print(df,row.names=FALSE) ## ----nhanescodebook, eval=FALSE----------------------------------------------- # nhanesCodebook('DEMO_D', 'RIAGENDR') ## ----translate1, echo=FALSE--------------------------------------------------- df <- data.frame(matrix(1,nrow=3,ncol=5)) names(df) <- c("Code.or.Value", "Value.Description", "Count", "Cumulative", "Skip to Item") df[1,] <- list(1, 'Male', 5080, 5080, NA) df[2,] <- list(2, 'Female', 5268, 10348, NA) df[3,] <- list('.', 'Missing', 0, 10348, NA) codelist <- list("RIAGENDR", "Gender", "Gender of the sample person", "Both males and females 0 YEARS -\r 150 YEARS", df) names(codelist) <- c('Variable Name', 'SAS Label', 'English Text', 'Target', 'RIAGENDR') codelist ## ----nhanestranslate1, eval=FALSE--------------------------------------------- # bpx_d <- nhanes('BPX_D', translate=FALSE) # head(bpx_d[,6:11]) ## ----simpletranslate1, echo=FALSE--------------------------------------------- df <- data.frame(matrix(1,nrow=6,ncol=6)) names(df) <- c("BPQ150A", "BPQ150B", "BPQ150C", "BPQ150D", "BPAARM", "BPACSZ") df[2:6,1:4] <- 2 df[3,1] <- 1 df[3:6,6] <- 4 df[2,6] <- 3 df[4,6] <- 3 df[1,] <- NA df ## ----nhanestranslate2, eval=FALSE--------------------------------------------- # bpx_d_vars <- nhanesTableVars('EXAM', 'BPX_D', namesonly=TRUE) # #Alternatively may use bpx_d_vars = names(bpx_d) # bpx_d <- nhanesTranslate('BPX_D', bpx_d_vars, data=bpx_d) ## ----simpletranslate2, echo=FALSE--------------------------------------------- translated <- c('BPAARM', 'BPACSZ', 'BPAEN2', 'BPAEN3', 'BPAEN4', 'BPQ150A', 'BPQ150B', 'BPQ150C', 'BPQ150D', 'BPXPTY', 'BPXPULS', 'PEASCCT1', 'PEASCST1') message(paste(c("Translated columns:", translated), collapse = ' ')) ## ----nhanestranslate3, eval=FALSE--------------------------------------------- # head(bpx_d[,6:11]) ## ----simpletranslate3, echo=FALSE--------------------------------------------- df$BPAARM[df$BPAARM==1] <- 'Right' df[df==1] <- 'Yes' df[df==2] <- 'No' df[df==3] <- 'Adult (12X22)' df[df==4] <- 'Large (15X32)' df ## ----nhaneslapplytables, eval=FALSE------------------------------------------- # q2007names <- nhanesTables('Q', 2007, namesonly=TRUE) # q2007tables <- lapply(q2007names, nhanes) # names(q2007tables) <- q2007names ## ----prepan, eval=FALSE------------------------------------------------------- # #List all pre-pandemic tables # nhanesSearchTableNames('^P_') # #List table variables # nhanesTableVars('EXAM', 'P_AUX', namesonly=TRUE) # #List pre-pandemic EXAM tables # nhanesTables('EXAM', 'P') # #Table import, variable translation, and codebook display operate as usual # p_dxxfem <- nhanes('P_DXXFEM') # nhanesTranslate('P_BMX', 'BMDSTATS') # nhanesCodebook('P_INS', 'LBDINSI') ## ----nhanesdxa, eval=FALSE---------------------------------------------------- # #Import into R # dxx_b <- nhanesDXA(2001) # #Save to file # nhanesDXA(2001, destfile="dxx_b.xpt") # #Import supplemental data # dxx_c_s <- nhanesDXA(2003, suppl=TRUE) # #Apply code translations # dxalist <- c('DXAEXSTS', 'DXIHE') # dxx_b <- nhanesTranslate("dxxb",colnames=dxalist, data=dxx_b, dxa=TRUE) ## ----nnyfs, eval=FALSE-------------------------------------------------------- # #List NNYFS EXAM tables # nhanesTables('EXAM', 'Y') # #Table import and variable translation operate as usual # y_cvx <- nhanes('Y_CVX') # nhanesTranslate('Y_CVX','CVXPARC') ## ----nhanessearch, eval=FALSE------------------------------------------------- # # nhanesSearch use examples # # # # Search on the word bladder, restrict to the 2001-2008 surveys, # # print out 50 characters of the variable description # nhanesSearch("bladder", ystart=2001, ystop=2008, nchar=50) # # # # Search on "urin" (will match urine, urinary, etc), from 1999-2010, return table names only # nhanesSearch("urin", ignore.case=TRUE, ystop=2010, namesonly=TRUE) # # # # Search on "urin", exclude "During", search surveys from 1999-2010, return table names only # nhanesSearch("urin", exclude_terms="during", ignore.case=TRUE, ystop=2010, namesonly=TRUE) # # # # Restrict search to 'EXAM' and 'LAB' data groups. Explicitly list matching and exclude terms, leave ignore.case set to default value of FALSE. Search surveys from 2009 to present. # nhanesSearch(c("urin", "Urin"), exclude_terms=c("During", "eaten during", "do during"), data_group=c('EXAM', 'LAB'), ystart=2009) # # # # Search on "tooth" or "teeth", all years # nhanesSearch(c("tooth", "teeth"), ignore.case=TRUE) # # # # Search for variables where the variable description begins with "Tooth" # nhanesSearch("^Tooth") ## ----nhanessearchvarname1, eval=FALSE----------------------------------------- # #nhanesSearchVarName use examples # nhanesSearchVarName('BPXPULS') ## ----nhanessearchvarname2, echo=FALSE----------------------------------------- bpxtables <- c("BPX_D", "BPX_E", "BPX", "BPX_C", "BPX_B", "BPX_F", "BPX_G", "BPX_H", "BPX_I", "BPX_J") bpxtables ## ----nhanessearchvarname3, eval=FALSE----------------------------------------- # nhanesSearchVarName('CSQ260i', includerdc=TRUE, nchar=38, namesonly=FALSE) ## ----nhanessearchvarname4, echo=FALSE----------------------------------------- df <- data.frame(Variable.Name=character(2), Variable.Description=character(2), Data.File.Name=character(2), Data.File.Description=character(2), Begin.Year=integer(2), EndYear=integer(2), Component=character(2), Use.Constraints=character(2)) df[1,] <- list('CSQ260i', 'Do you now have any of the following p','CSX_G_R','Taste & Smell', 2012,2012,'Examination', 'RDC Only') df[2,] <- list('CSQ260i', 'Do you now have any of the following p','CSX_H','Taste & Smell', 2013, 2014, 'Examination', 'None') df ## ----nhanessearchtablenames1, eval=FALSE-------------------------------------- # # nhanesSearchTableNames use examples # nhanesSearchTableNames('BMX') ## ----nhanessearchtablename2, echo=FALSE--------------------------------------- bpxtables <- c("BMX_D", "BMX", "BMX_E", "BMX_C", "BMX_B", "BMX_F", "BMX_H", "BMX_G", "BMX_I", "BMX_J", "P_BMX") bpxtables ## ----nhanessearchtablenames3, eval=FALSE-------------------------------------- # nhanesSearchTableNames('HPVS', includerdc=TRUE, nchar=42, details=TRUE) ## ----nhanessearchtablenames4, echo=FALSE-------------------------------------- df <- data.frame( Years=character(), # Data.File.Name=character(), Doc.File=character(), Data.File=character(), Date.Published=character()) df[1,] <- list('2009-2010', 'HPVSER_F Doc', 'HPVSER_F Data [XPT - 171.6 KB]', 'November 2013') df[2,] <- list('2007-2008', 'HPVSER_E Doc', 'HPVSER_E Data [XPT - 155.7 KB]', 'November 2013') df[3,] <- list('2005-2006', 'HPVSER_D Doc', 'HPVSER_D Data [XPT - 151.6 KB]', 'July 2013') df[4,] <- list('2005-2006', 'HPVSRM_D Doc', 'HPVSRM_D Data [XPT - 302.6 KB]', 'January 2015') df[5,] <- list('2007-2008', 'HPVSWR_E Doc', 'HPVSWR_E Data [XPT - 677.9 KB]', 'August 2012') df[6,] <- list('2009-2010', 'HPVSWR_F Doc', 'HPVSWR_F Data [XPT - 725.2 KB]', 'August 2012') df[7,] <- list('2011-2012', 'HPVSWR_G Doc', 'HPVSWR_G Data [XPT - 661.1 KB]', 'March 2015') df[8,] <- list('2005-2006', 'HPVSWR_D Doc', 'HPVSWR_D Data [XPT - 694.4 KB]', 'Updated November 2018') df[9,] <- list('2013-2014', 'HPVSWR_H Doc', 'HPVSWR_H Data [XPT - 716.6 KB]', 'December 2016') df[10,] <- list('2015-2016', 'HPVSWC_I Doc', 'HPVSWC_I Data [XPT - 33.3 KB]', 'November 2018') df[11,] <- list('2015-2016', 'HPVSWR_I Doc', 'HPVSWR_I Data [XPT - 667.5 KB]', 'November 2018') df[12,] <- list('2005-2006', 'HPVS_D_R Doc', 'RDC Only', 'July 2013') df[13,] <- list('2009-2010', 'HPVS_F_R Doc', 'RDC Only', 'August 2012') df[14,] <- list('2011-2012', 'HPVS_G_R Doc', 'RDC Only', 'March 2015') df[15,] <- list('2013-2014', 'HPVS_H_R Doc', 'RDC Only', 'December 2016') df[16,] <- list('2015-2016', 'HPVS_I_R Doc', 'RDC Only', 'November 2018') df[17,] <- list('2017-2018', 'HPVS_J_R Doc', 'RDC Only', 'December 2020') df