## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( fig.align = "center", fig.height = 4, fig.width = 6, collapse = TRUE, comment = "#>" ) ## ----results='hide'----------------------------------------------------------- library("oddsratio") fit_gam <- mgcv::gam(y ~ s(x0) + s(I(x1^2)) + s(x2) + offset(x3) + x4, data = data_gam ) ## ----------------------------------------------------------------------------- or_gam( data = data_gam, model = fit_gam, pred = "x2", values = c(0.099, 0.198) ) ## ----------------------------------------------------------------------------- or_gam( data = data_gam, model = fit_gam, pred = "x4", values = c("A", "B") ) ## ----------------------------------------------------------------------------- or_gam( data = data_gam, model = fit_gam, pred = "x2", percentage = 20, slice = TRUE ) ## ----------------------------------------------------------------------------- library(ggplot2) plot_gam(fit_gam, pred = "x2", title = "Predictor 'x2'") + theme_minimal() ## ----------------------------------------------------------------------------- plot_object <- plot_gam(fit_gam, pred = "x2", title = "Predictor 'x2'") or_object <- or_gam( data = data_gam, model = fit_gam, pred = "x2", values = c(0.099, 0.198) ) plot <- insert_or(plot_object, or_object, or_yloc = 3, values_xloc = 0.05, arrow_length = 0.02, arrow_col = "red" ) plot + theme_minimal() ## ----------------------------------------------------------------------------- or_object2 <- or_gam( data = data_gam, model = fit_gam, pred = "x2", values = c(0.4, 0.6) ) insert_or(plot, or_object2, or_yloc = 2.1, values_yloc = 2, line_col = "green4", text_col = "black", rect_col = "green4", rect_alpha = 0.2, line_alpha = 1, line_type = "dashed", arrow_xloc_r = 0.01, arrow_xloc_l = -0.01, arrow_length = 0.02, rect = TRUE ) + theme_minimal() ## ----------------------------------------------------------------------------- fit_glm <- glm(admit ~ gre + gpa + rank, data = data_glm, family = "binomial") ## ----------------------------------------------------------------------------- or_glm(data = data_glm, model = fit_glm, incr = list(gre = 380, gpa = 5)) ## ----------------------------------------------------------------------------- or_glm( data = data_glm, model = fit_glm, incr = list(gre = 380, gpa = 5), ci = 0.70 )