## ----setup, include = FALSE--------------------------------------------------- if (identical(Sys.getenv("IN_PKGDOWN"), "true")) { dpi <- 320 } else { dpi <- 72 } knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, fig.align = "center", fig.dpi = dpi, warning = FALSE, message = FALSE ) options(tibble.max_extra_cols = 10) ## ----------------------------------------------------------------------------- library(partition) library(ggplot2) set.seed(1234) # create a 100 x 15 data set with 3 blocks df <- simulate_block_data( # create 3 correlated blocks of 5 features each block_sizes = rep(5, 3), lower_corr = .4, upper_corr = .6, n = 100 ) ## ----------------------------------------------------------------------------- ggcorrplot::ggcorrplot(corr(df)) ## ----------------------------------------------------------------------------- baxter_otu ## ----------------------------------------------------------------------------- correlation_subset <- corr(baxter_otu[, 1:200]) ggcorrplot::ggcorrplot(correlation_subset, hc.order = TRUE) + ggplot2::theme_void() ## ----------------------------------------------------------------------------- prt <- partition(baxter_otu, threshold = .5) prt ## ----------------------------------------------------------------------------- partition_scores(prt) ## ----------------------------------------------------------------------------- pca <- prcomp(baxter_otu) # print the results more neatly tibble::as_tibble(pca$x) ## ----------------------------------------------------------------------------- plot_ncluster(prt, show_n = 20) + # plot_*() functions return ggplots, so they can be extended using ggplot2 theme_minimal(14) ## ----------------------------------------------------------------------------- plot_information(prt, geom = geom_histogram) + theme_minimal(14) ## ----------------------------------------------------------------------------- mapping_key(prt) ## ----------------------------------------------------------------------------- unnest_mappings(prt) ## ----------------------------------------------------------------------------- part_icc() ## ----------------------------------------------------------------------------- prt_pc1 <- partition(baxter_otu, threshold = .5, partitioner = part_pc1()) prt_pc1 ## ----------------------------------------------------------------------------- # create a data.frame of 10 independent features ind_df <- purrr::map_dfc(1:10, ~ rnorm(30)) ind_part <- partition(ind_df, .5) ind_part identical(ind_df, partition_scores(ind_part)) ## ----------------------------------------------------------------------------- plot_stacked_area_clusters(df) + theme_minimal(14) ## ----------------------------------------------------------------------------- perms <- test_permutation(df, nperm = 10) perms ## ----fig.height = 7----------------------------------------------------------- plot_permutation(perms, .plot = "nreduced") + theme_minimal(14)