## ----message = FALSE----------------------------------------------------------

library(broom)
library(dplyr)
library(photosynthesis)

acq_data = system.file("extdata", "A_Ci_Q_data_1.csv", package = "photosynthesis") |> 
  read.csv()

fit = fit_photosynthesis(
  .data = acq_data,
  .photo_fun = "r_light",
  .model = "walker_ort_2015",
  .vars = list(.A = A, .Q = Qin, .C = Ci),
  C_upper = 300,
  # Irradiance levels used in experiment
  Q_levels =  c(1500, 750, 375, 125, 100, 75, 50, 25),
)

# The 'fit' object inherits class 'lm' and many methods can be used

## Model summary:
summary(fit)

## Estimated parameters:
coef(fit)

## 95% confidence intervals:
## n.b. these confidence intervals are not correct because the regression is fit 
## sequentially. It ignores the underlying data and uncertainty in estimates of 
## slopes and intercepts with each A-C curve. Use '.method = "brms"' to properly 
## calculate uncertainty. 
confint(fit)

## Tidy summary table using 'broom::tidy()'
tidy(fit, conf.int = TRUE, conf.level = 0.95)

## Calculate residual sum-of-squares
sum(resid(fit)^2)


## ----message = FALSE----------------------------------------------------------

library(broom)
library(dplyr)
library(photosynthesis)

acq_data = system.file("extdata", "A_Ci_Q_data_1.csv", package = "photosynthesis") |> 
  read.csv()

fit = fit_photosynthesis(
  .data = acq_data,
  .photo_fun = "r_light",
  .model = "yin_etal_2011",
  .vars = list(.A = A, .phiPSII = PhiPS2, .Q = Qin),
  Q_lower = 20,
  Q_upper = 250
)

# The 'fit' object inherits class 'lm' and many methods can be used

## Model summary:
summary(fit)

## Estimated parameters:
coef(fit)

## 95% confidence intervals:
confint(fit)

## Tidy summary table using 'broom::tidy()'
tidy(fit, conf.int = TRUE, conf.level = 0.95)

## Calculate residual sum-of-squares
sum(resid(fit)^2)


## ----message = FALSE----------------------------------------------------------

library(broom)
library(dplyr)
library(photosynthesis)

acq_data = system.file("extdata", "A_Ci_Q_data_1.csv", package = "photosynthesis") |> 
  read.csv()

fit = fit_photosynthesis(
  .data = acq_data,
  .photo_fun = "r_light",
  .model = "kok_1956",
  .vars = list(.A = A, .Q = Qin),
  Q_lower = 20,
  Q_upper = 150
)

# The 'fit' object inherits class 'lm' and many methods can be used

## Model summary:
summary(fit)

## Estimated parameters:
coef(fit)

## 95% confidence intervals:
confint(fit)

## Tidy summary table using 'broom::tidy()'
tidy(fit, conf.int = TRUE, conf.level = 0.95)

## Calculate residual sum-of-squares
sum(resid(fit)^2)


## ----message = FALSE, warning=FALSE, results='hide', eval = FALSE-------------
# 
# library(dplyr)
# library(photosynthesis)
# library(tidyr)
# 
# acq_data = system.file("extdata", "A_Ci_Q_data_1.csv", package = "photosynthesis") |>
#   read.csv()
# 
# fit = fit_photosynthesis(
#   .data = acq_data,
#   .photo_fun = "r_light",
#   .model = "walker_ort_2015",
#   .method = "brms",
#   .vars = list(.A = A, .Q = Qin, .C = Ci),
#   C_upper = 300,
#   # Irradiance levels used in experiment
#   Q_levels =  c(1500, 750, 375, 125, 100, 75, 50, 25),
#   brm_options = list(chains = 1, seed = 20221118)
# )
# 
# # The 'fit' object inherits class 'brmsfit' and many methods can be used
# 
# # The following code will extract parameter estimates and 95% CIs from the
# # posterior distribution
# ests = fit |>
#   as.data.frame() |>
#   dplyr::select(
#     r_xy = `cor_.Q_level__Intercept__.C`,
#     sd_x = `sd_.Q_level__Intercept`,
#     sd_y = `sd_.Q_level__.C`,
#     mu_x = b_Intercept,
#     mu_y = b_.C
#   ) |>
#   dplyr::mutate(
#     gamma_star = -r_xy * sd_x / sd_y,
#     Rd = mu_x + gamma_star * mu_y
#   ) |>
#   dplyr::summarise(dplyr::across(gamma_star:Rd, list(
#     estimate = median,
#     lower = ~quantile(., probs = 0.25),
#     upper = ~quantile(., probs = 0.975)
#   ))) |>
#   pivot_longer(
#     everything(),
#     names_to = c("parameter", ".value"),
#     names_pattern = "(gamma_star|Rd)_(estimate|lower|upper)"
#   )
# 

## ----message = FALSE, eval = FALSE--------------------------------------------
# 
# library(photosynthesis)
# 
# acq_data = system.file("extdata", "A_Ci_Q_data_1.csv", package = "photosynthesis") |>
#   read.csv()
# 
# fit = fit_photosynthesis(
#   .data = acq_data,
#   .photo_fun = "r_light",
#   .model = "yin_etal_2011",
#   .method = "brms",
#   .vars = list(.A = A, .phiPSII = PhiPS2, .Q = Qin),
#   Q_lower = 20,
#   Q_upper = 250,
#   brm_options = list(chains = 1)
# )
# 
# # The 'fit' object inherits class 'brmsfit' and many methods can be used
# summary(fit)
# 

## ----message = FALSE, eval = FALSE--------------------------------------------
# 
# library(photosynthesis)
# 
# acq_data = system.file("extdata", "A_Ci_Q_data_1.csv", package = "photosynthesis") |>
#   read.csv()
# 
# fit = fit_photosynthesis(
#   .data = acq_data,
#   .photo_fun = "r_light",
#   .model = "kok_1956",
#   .method = "brms",
#   .vars = list(.A = A, .Q = Qin),
#   Q_lower = 20,
#   Q_upper = 150,
#   brm_options = list(chains = 1)
# )
# 
# # The 'fit' object inherits class 'brmsfit' and many methods can be used
# summary(fit)
# 

## ----message = FALSE, warning=FALSE-------------------------------------------
library(dplyr)
library(photosynthesis)

round_to_nearest = function(x, values) {
  sapply(x, function(y, values) {
    values[which.min(abs(y - values))]
  }, values = values)
}

# Read in your data
dat = system.file("extdata", "A_Ci_Q_data_1.csv", package = "photosynthesis") |> 
  read.csv() |>
  mutate(group = photosynthesis:::round_to_nearest(CO2_s, values = c(50, 100, 200, 300, 410, 600, 820, 1200, 1600))) |>
  rename(A_net = A, PPFD = Qin, phi_PSII = PhiPS2, C_i = Ci)

# Fit light respiration with Yin method
r_light = fit_r_light_yin(data = dat, PPFD_lower = 20, PPFD_upper = 250)

# Fit light respiration with Kok method
r_light = fit_r_light_kok(data = dat, PPFD_lower = 20, PPFD_upper = 150)

# Fit light respiration across groups with Yin method
r_lights = fit_many(
  data = dat,
  funct = fit_r_light_yin,
  group = "group",
  PPFD_lower = 20, PPFD_upper = 250,
  progress = FALSE
)

#Fit the Walker-Ort method for GammaStar and light respiration
walker_ort = fit_r_light_WalkerOrt(dat)

# View model output
summary(walker_ort[[1]])

# View graph
# walker_ort[[2]]

# View coefficients
walker_ort[[3]]