
Package ‘priorCON’
September 7, 2024

Type Package

Title Graph Community Detection Methods into Systematic Conservation
Planning

Version 0.1.1

Maintainer Christos Adam <econp266@econ.soc.uoc.gr>

Description An innovative tool-set that incorporates graph community detection
methods into systematic conservation planning. It is designed to
enhance spatial prioritization by focusing on the protection of
areas with high ecological connectivity. Unlike traditional
approaches that prioritize individual planning units, 'priorCON'
focuses on clusters of features that exhibit strong ecological
linkages. The 'priorCON' package is built upon the 'prioritizr'
package <doi:10.32614/CRAN.package.prioritizr>, using commercial
and open-source exact algorithm solvers that ensure optimal
solutions to prioritization problems.

License GPL-3

Encoding UTF-8

URL https://github.com/cadam00/priorCON

BugReports https://github.com/cadam00/priorCON/issues

Imports utils, prioritizr (>= 8.0.4), terra (>= 1.7.78), highs, tmap
(>= 3.3.4), sf (>= 1.0.16), brainGraph (>= 3.1.0), igraph (>=
2.0.3)

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr, rmarkdown

NeedsCompilation no

Author Christos Adam [aut, cre],
Nikolaos Nagkoulis [aut],
Aggeliki Doxa [aut]

Repository CRAN

Date/Publication 2024-09-07 06:00:03 UTC

1

https://doi.org/10.32614/CRAN.package.prioritizr
https://github.com/cadam00/priorCON
https://github.com/cadam00/priorCON/issues

2 basic_scenario

Contents

basic_scenario . 2
connectivity_scenario . 3
get_cost_raster . 4
get_features_raster . 5
get_metrics . 6
get_outputs . 7
preprocess_graphs . 9

Index 12

basic_scenario Basic scenario problem

Description

Solve an ordinary prioritizr prioritization problem.

Usage

basic_scenario(cost_raster, features_rasters, budget_perc)

Arguments

cost_raster SpatRaster object used as cost for prioritization. Its coordinates must corre-
spond to the input given at preprocess_graphs.

features_rasters

features SpatRaster object used for prioritization. Its coordinates must corre-
spond to the input given at preprocess_graphs.

budget_perc numeric value [0, 1]. It represents the budget percentage of the cost to be used
for prioritization.

Details

A basic prioritization problem is created and solved using prioritizr package. The solver used
for solving the problems is the best available on the computer, following the solver hierarchy of
prioritizr. By default, the highs package using the HiGHS solver is downloaded during package
installation.

Value

A list containing input for get_outputs.

https://highs.dev/

connectivity_scenario 3

References

Hanson, Jeffrey O, Richard Schuster, Nina Morrell, Matthew Strimas-Mackey, Brandon P M Ed-
wards, Matthew E Watts, Peter Arcese, Joseph Bennett, and Hugh P Possingham. 2024. prioritizr:
Systematic Conservation Prioritization in R. https://prioritizr.net.

Huangfu, Qi, and JA Julian Hall. 2018. Parallelizing the Dual Revised Simplex Method. Mathe-
matical Programming Computation 10 (1): 119–42. doi:10.1007/s1253201701305

See Also

preprocess_graphs,get_metrics

Examples

Read connectivity files from folder and combine them
combined_edge_list <- preprocess_graphs(system.file("external", package="priorCON"),

header = FALSE, sep =";")

Set seed for reproducibility
set.seed(42)

cost_raster <- get_cost_raster()
features_rasters <- get_features_raster()

Solve an ordinary prioritizr prioritization problem
basic_solution <- basic_scenario(cost_raster=cost_raster,
features_rasters=features_rasters, budget_perc=0.1)

connectivity_scenario Connectivity scenario problem

Description

Solve a prioritizr prioritization problem, by incorporating graph connectivity of the features.

Usage

connectivity_scenario(cost_raster, features_rasters = NULL, budget_perc,
pre_graphs)

Arguments

cost_raster SpatRaster object used as cost for prioritization. Its coordinates must corre-
spond to the input given at preprocess_graphs.

features_rasters

features SpatRaster object used for prioritization. Its coordinates must corre-
spond to the input given at preprocess_graphs.

budget_perc numeric value [0, 1]. It represents the budget percentage of the cost to be used
for prioritization.

pre_graphs output of get_metrics function.

https://prioritizr.net
https://doi.org/10.1007/s12532-017-0130-5

4 get_cost_raster

Details

A connectivity prioritization problem is created and solved using prioritizr package. The solver
used for solving the problems is the best available on the computer, following the solver hierarchy
of prioritizr. By default, the highs package using the HiGHS solver is downloaded during package
installation.

Value

A list containing input for get_outputs.

References

Hanson, Jeffrey O, Richard Schuster, Nina Morrell, Matthew Strimas-Mackey, Brandon P M Ed-
wards, Matthew E Watts, Peter Arcese, Joseph Bennett, and Hugh P Possingham. 2024. prioritizr:
Systematic Conservation Prioritization in R. https://prioritizr.net.

Huangfu, Qi, and JA Julian Hall. 2018. Parallelizing the Dual Revised Simplex Method. Mathe-
matical Programming Computation 10 (1): 119–42. doi:10.1007/s1253201701305

See Also

preprocess_graphs,get_metrics

Examples

Read connectivity files from folder and combine them
combined_edge_list <- preprocess_graphs(system.file("external", package="priorCON"),

header = FALSE, sep =";")

Set seed for reproducibility
set.seed(42)

Detect graph communities using the s-core algorithm
pre_graphs <- get_metrics(combined_edge_list, which_community = "s_core")

cost_raster <- get_cost_raster()
features_rasters <- get_features_raster()

Solve a prioritizr prioritization problem,
by incorporating graph connectivity of the features
connectivity_solution <- connectivity_scenario(cost_raster=cost_raster,
features_rasters=features_rasters, budget_perc=0.1, pre_graphs=pre_graphs)

get_cost_raster Cost raster example

Description

Cost raster example.

https://highs.dev/
https://prioritizr.net
https://doi.org/10.1007/s12532-017-0130-5

get_features_raster 5

Usage

get_cost_raster()

Value

A cost SpatRaster object to use for examples.

Examples

library(tmap)

Import features_raster
cost_raster <- get_cost_raster()

Plot with tmap
tm_shape(cost_raster) +

tm_raster(title = "cost")

get_features_raster Features raster example

Description

Features raster example.

Usage

get_features_raster()

Value

A features SpatRaster object to use for examples.

Examples

library(tmap)

Import features_raster
features_raster <- get_features_raster()

Plot with tmap
tm_shape(features_raster) +

tm_raster(title = "f1")

6 get_metrics

get_metrics Detect graph communities for each biodiversity feature.

Description

Detect graph communities for each biodiversity feature.

Usage

get_metrics(connect_mat, which_community = "s_core")

Arguments

connect_mat a data.frame object where the edge lists are contained. See more in details.

which_community

character value for community type detection. It can be one of "s_core",
"louvain", "walktrap", "eigen", "betw", "deg" or "page_rank". The de-
fault is "s_core".

Details

Function get_metrics is used to calculate graph metrics values. The edge lists created from the
previous step, or inserted directly from the user are used in this step to create graphs. The directed
graphs are transformed to undirected. The function is based on the igraph package which is used to
create clusters using Louvain and Walktrap and calculate the following metrics: Eigenvector Cen-
trality, Betweenness Centrality and Degree. S-core is calculated using the package brainGraph.

connect_mat is either the output of preprocess_graphs or a custom edge list data.frame object,
with the following columns:

• feature: feature name.

• from.X: longitude of the origin (source).

• from.Y: latitude of the origin (source).

• to.X: longitude of the destination (target).

• to.Y: latitude of the destination (target).

• weight: connection weight.

Value

A list containing input for basic_scenario or connectivity_scenario.

get_outputs 7

References

Csárdi, Gábor, and Tamás Nepusz. 2006. The Igraph Software Package for Complex Network
Research. InterJournal Complex Systems: 1695. https://igraph.org.

Csárdi, Gábor, Tamás Nepusz, Vincent Traag, Szabolcs Horvát, Fabio Zanini, Daniel Noom, and
Kirill Müller. 2024. igraph: Network Analysis and Visualization in R. doi:10.5281/zenodo.7682609.

Watson, Christopher G. 2024. brainGraph: Graph Theory Analysis of Brain MRI Data. doi:10.32614/
CRAN.package.brainGraph.

See Also

preprocess_graphs,get_metrics

Examples

Read connectivity files from folder and combine them
combined_edge_list <- preprocess_graphs(system.file("external",

package="priorCON"),
header = FALSE, sep =";")

Set seed for reproducibility
set.seed(42)

Detect graph communities using the s-core algorithm
pre_graphs <- get_metrics(combined_edge_list, which_community = "s_core")

get_outputs Evaluate outputs

Description

Evaluate outputs from basic_scenario or connectivity_scenario functions for a selected feature.

Usage

get_outputs(solution, feature, pre_graphs, loose = FALSE, patch = FALSE)

Arguments

solution output from basic_scenario or connectivity_scenario functions.

feature character with a single feature name used for plots.

pre_graphs output of get_metrics function.

loose use loose or strict graph community connectivity definition. See more in details.

patch logical value. If patch = TRUE, then different colors can be used for each
distinct patch at output plots.

https://igraph.org
https://doi.org/10.5281/zenodo.7682609
https://doi.org/10.32614/CRAN.package.brainGraph
https://doi.org/10.32614/CRAN.package.brainGraph

8 get_outputs

Details

Loose graph connectivity indicates the case where two protected nodes (cells) can be considered
connected, even if the between them cells are not protected (thus not included in the solution),
whereas strict connectivity indicates the case where two protected cells can be considered con-
nected, only if they are cells between them that are also protected. The default is loose = FALSE,
indicating the use of the strict connectivity definition.

Value

A list containing the following items:

• tmap: tmap plot of the solution including connections.

• solution: terra SpatRaster object representing the prioritization solution.

• connections: sf LINESTRING object representing the preserved connections of the solution.

• connectivity_table: data.frame containing all feature names at the first column, the relative
held percentages at the second column and the percentage of connections held at the third
column.

References

Hijmans, Robert J. 2024. terra: Spatial Data Analysis. doi:10.32614/CRAN.package.terra.

Pebesma, Edzer. 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The
R Journal 10 (1): 439–46. doi:10.32614/RJ2018009.

Pebesma, Edzer, and Roger Bivand. 2023. Spatial Data Science: With applications in R. Chapman
and Hall/CRC. doi:10.1201/9780429459016

See Also

basic_scenario,connectivity_scenario

Examples

Read connectivity files from folder and combine them
combined_edge_list <- preprocess_graphs(system.file("external", package="priorCON"),

header = FALSE, sep =";")

Set seed for reproducibility
set.seed(42)

Detect graph communities using the s-core algorithm
pre_graphs <- get_metrics(combined_edge_list, which_community = "s_core")

cost_raster <- get_cost_raster()
features_rasters <- get_features_raster()

Solve a prioritizr prioritization problem, by incorporating graph connectivity of the features
connectivity_solution <- connectivity_scenario(

cost_raster = cost_raster,
features_rasters = features_rasters,

https://doi.org/10.32614/CRAN.package.terra
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1201/9780429459016

preprocess_graphs 9

budget_perc = 0.1,
pre_graphs = pre_graphs

)

Get outputs from connectivity_scenario function for feature "f1"
connectivity_outputs <- get_outputs(solution = connectivity_solution,

feature = "f1",
pre_graphs = pre_graphs)

Plot tmap
connectivity_outputs$tmap

Print summary of features and connections held percentages for connectivity scenario
print(connectivity_outputs$connectivity_table)
feature relative_held connections(%)
1 f1 0.1637209 0.3339886

preprocess_graphs Read connectivity data from multiple sub-folders.

Description

Read connectivity data from multiple sub-folders.

Usage

preprocess_graphs(path, ...)

Arguments

path a path of the folder where sub-folders containing txt or csv files are contained.
Each sub-folder has the name of the corresponding connectivity data. In case
that a connectivity folder corresponds to a specific biodiversity feature, it should
be named as the corresponding feature.

... additional arguments passed to read.csv.

Details

This is an auxiliary function for creating an edge list data.frame object from multiple files, like
the ones provided from softwares estimating Lagrangian models.

Function preprocess_graphs takes as input a list of .txt/.csv objects. Each object represents the
connections between a node and all the other nodes. For the model to read the data, it is necessary
to have all the .txt/.csv objects in one folder. There are two ways to incorporate connectivity data,
based on their linkage to features:

• Case 1: the connectivity data correspond to specific biodiversity features. If a biodiversity
feature has its own connectivity dataset then the file including the edge lists needs to have
the same name as the corresponding feature. For example, consider having 5 species (f1, f2,

10 preprocess_graphs

f3, f4, f5) and 5 connectivity datasets. Then the connectivity datasets need to be in separate
folders named: f1,f2,f3,f4,f5 and the algorithm will understand that they correspond to the
species.

• Case 2: the connectivity dataset represents a spatial pattern that is not directly connected with
a specific biodiversity feature. Then the connectivity data need to be included in a separate
folder named in a different way than the species. For example consider having 5 species
(f1,f2,f3,f4,f5) and 1 connectivity dataset. This dataset can be included in a separate folder
(e.g. "Langragian_con").

A typical Lagrangian output is a set of files representing the likelihood of a point moving from an
origin (source) to a destination (target). This can be represented using a list of .txt/.csv files (as
many as the origin points) including information for the destination probability. The .txt/.csv files
need to be named in an increasing order. The name of the files need to correspond to the numbering
of the points, in order for the algorithm to match the coordinates with the points.

Value

an edge list data.frame object, with the following columns:

• feature: feature name.

• from.X: longitude of the origin (source).

preprocess_graphs 11

• from.Y: latitude of the origin (source).

• to.X: longitude of the destination (target).

• to.Y: latitude of the destination (target).

• weight: connection weight.

See Also

preprocess_graphs,get_metrics

Examples

Read connectivity files from folder and combine them
combined_edge_list <- preprocess_graphs(system.file("external",

package="priorCON"),
header = FALSE, sep =";")

head(combined_edge_list)

feature from.X from.Y to.X to.Y weight
1 f1 22.62309 40.30342 22.62309 40.30342 0.000
2 f1 22.62309 40.30342 22.62309 40.39144 0.000
3 f1 22.62309 40.30342 22.62309 40.41341 0.000
4 f1 22.62309 40.30342 22.62309 40.43537 0.005
5 f1 22.62309 40.30342 22.62309 40.45731 0.000
6 f1 22.62309 40.30342 22.65266 40.30342 0.000

Index

basic_scenario, 2, 6–8

connectivity_scenario, 3, 6–8

get_cost_raster, 4
get_features_raster, 5
get_metrics, 3, 4, 6, 6, 7, 11
get_outputs, 2, 4, 7

preprocess_graphs, 2–4, 6, 7, 9, 9, 11

12

	basic_scenario
	connectivity_scenario
	get_cost_raster
	get_features_raster
	get_metrics
	get_outputs
	preprocess_graphs
	Index

