## ----include = FALSE---------------------------------------------------------- ggplot2::theme_set(bayesplot::theme_default(base_family = "sans")) ## ----------------------------------------------------------------------------- #| warning: false library(priorsense) library(rstan) ## ----------------------------------------------------------------------------- #| warning: false #| eval: false #| message: false # normal_model <- example_powerscale_model("univariate_normal") # # fit <- stan( # model_code = normal_model$model_code, # data = normal_model$data, # refresh = FALSE, # seed = 123 # ) # ## ----------------------------------------------------------------------------- #| echo: false #| warning: false #| message: false normal_model <- example_powerscale_model("univariate_normal") fit <- normal_model$draws ## ----------------------------------------------------------------------------- #| message: false #| warning: false powerscale_sensitivity(fit, variable = c("mu", "sigma")) ## ----------------------------------------------------------------------------- #| message: false #| warning: false #| fig-width: 6 #| fig-height: 4 powerscale_plot_dens(fit, variable = "mu", facet_rows = "variable") ## ----------------------------------------------------------------------------- #| message: false #| warning: false #| fig-width: 6 #| fig-height: 4 powerscale_plot_ecdf(fit, variable = "mu", facet_rows = "variable") ## ----------------------------------------------------------------------------- #| message: false #| warning: false #| fig-width: 12 #| fig-height: 4 powerscale_plot_quantities(fit, variable = "mu") ## ----------------------------------------------------------------------------- mean(normal_model$data$y) sd(normal_model$data$y)