## ----include = FALSE, message=FALSE------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(pwr4exp) ## ----------------------------------------------------------------------------- df1 <- expand.grid( fA = factor(1:2), # factor A with 2 levels fB = factor(1:2), # factor B with 2 levels fC = factor(1:3), # factor C with 3 levels fD = factor(1:3), # factor D with 3 levels subject = factor(1:10) # 10 subjects ) df1$x <- rnorm(nrow(df1)) # Numerical variable x df1$z <- rnorm(nrow(df1)) # Numerical variable z ## ----------------------------------------------------------------------------- mkdesign( ~ fA * fB + x, df1)$fixeff$beta ## ----------------------------------------------------------------------------- mkdesign(~ fA + fB, df1, template = TRUE)$fixeff$means ## ----------------------------------------------------------------------------- mkdesign(~ fA * fB * fC, df1)$fixeff$means ## ----------------------------------------------------------------------------- mkdesign(~ x + z, df1)$fixeff$means ## ----------------------------------------------------------------------------- mkdesign(~ x * z, df1)$fixeff$means ## ----------------------------------------------------------------------------- mkdesign(~ fA * x, df1)$fixeff$means ## ----------------------------------------------------------------------------- mkdesign(~ fA * fB * fC + fD * x + z, df1)$fixeff$means ## ----------------------------------------------------------------------------- mkdesign(~ fA * fB * fC * fD + (1 + fA | subject), df1)$varcov ## ----------------------------------------------------------------------------- crd <- designCRD( treatments = 4, replicates = 8, means = c(35, 30, 37, 38), sigma2 = 15 ) ## ----------------------------------------------------------------------------- pwr.anova(crd) ## ----------------------------------------------------------------------------- pwr.contrast(crd, which = "trt", contrast = "pairwise") ## ----------------------------------------------------------------------------- pwr.contrast(crd, which = "trt", contrast = "poly") ## ----------------------------------------------------------------------------- pwr.contrast(crd, which = "trt", contrast = "trt.vs.ctrl") ## ----------------------------------------------------------------------------- pwr.contrast(crd, which = "trt", contrast = list(trts.vs.ctrl = c(-1, 1/3, 1/3, 1/3))) ## ----------------------------------------------------------------------------- pwr.contrast(crd, which = "trt", contrast = "pairwise", sig.level = 0.01) ## ----------------------------------------------------------------------------- pwr.contrast(crd, which = "trt", contrast = "pairwise", sig.level = 0.05, p.adj = TRUE) ## ----------------------------------------------------------------------------- designRCBD(treatments = c(2, 2), blocks = 8, template = TRUE) ## ----------------------------------------------------------------------------- rcbd <- designRCBD( treatments = c(2, 2), blocks = 8, # beta = c(35, 5, 3, -2), # identical to means means = c(35, 40, 38, 41), vcomp = 11, sigma2 = 4 ) ## ----------------------------------------------------------------------------- unique(rcbd$deStruct$fxTrms$fixedfr) rcbd$deStruct$formula ## ----------------------------------------------------------------------------- designRCBD(treatments = c(2, 2), label = list(factorA = c("A1", "A2"), factorB = c("B1", "B2")), blocks = 8, formula = ~ factorA + factorB + (1|block), template = TRUE) ## ----------------------------------------------------------------------------- pwr.anova(rcbd) ## ----------------------------------------------------------------------------- pwr.contrast(rcbd, which = "facA", by = "facB") ## ----------------------------------------------------------------------------- designLSD( treatments = c(2, 2), squares = 4, reuse = "both", template = TRUE ) ## ----------------------------------------------------------------------------- lsd <- designLSD( treatments = c(2, 2), label = list(temp = c("T1", "T2"), dosage = c("D1", "D2")), squares = 4, reuse = "both", means = c(35, 40, 38, 41), vcomp = c(11, 2), sigma2 = 2 ) ## ----------------------------------------------------------------------------- designSPD( trt.main = 2, trt.sub = 3, replicates = 10, template = TRUE ) ## ----------------------------------------------------------------------------- spd <- designSPD( trt.main = 2, trt.sub = 3, replicates = 10, means = c(20, 22, 22, 24, 24, 28), vcomp = 4, sigma2 = 11 ) ## ----------------------------------------------------------------------------- n_subject = 6 # Subjects per treatment n_trt = 3 # Number of treatments n_hour = 8 # Number of repeated measures (time points) trt = c("CON", "TRT1", "TRT2") df.rep <- data.frame( subject = as.factor(rep(seq_len(n_trt*n_subject), each = n_hour)), hour = as.factor(rep(seq_len(n_hour), n_subject*n_trt)), trt = rep(trt, each = n_subject*n_hour) ) ## ----------------------------------------------------------------------------- mkdesign(formula = ~ trt*hour, data = df.rep) ## ----------------------------------------------------------------------------- design.rep <- mkdesign( formula = ~ trt*hour, data = df.rep, means = c(1, 2.50, 3.5, 1, 3.50, 4.54, 1, 3.98, 5.80, 1, 4.03, 5.4, 1, 3.68, 5.49, 1, 3.35, 4.71, 1, 3.02, 4.08, 1, 2.94, 3.78), sigma2 = 2, correlation = corAR1(value = 0.6, form = ~ hour|subject) ) ## ----------------------------------------------------------------------------- pwr.anova(design.rep) ## ----------------------------------------------------------------------------- pwr.contrast(design.rep, which = "trt", by = "hour", contrast = "trt.vs.ctrl", p.adj = TRUE)[1:2]