## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true"),
  out.width = "100%"
)

## ----message = FALSE----------------------------------------------------------
# # increase Java memory
# options(java.parameters = "-Xmx2G")
# 
# # load libraries
# library(r5r)
# library(sf)
# library(ggplot2)
# library(data.table)
# 
# # build a routable transport network with r5r
# data_path <- system.file("extdata/poa", package = "r5r")
# r5r_core <- setup_r5(data_path)
# 
# # routing inputs
# mode <- c('walk', 'transit')
# max_trip_duration <- 60 # minutes
# 
# # departure time
# departure_datetime <- as.POSIXct("13-05-2019 14:00:00",
#                                  format = "%d-%m-%Y %H:%M:%S")
# 
# # load origin/destination points
# poi <- fread(file.path(data_path, "poa_points_of_interest.csv"))
# 

## ----message = FALSE----------------------------------------------------------
# # set inputs
# origins <- poi[10,]
# destinations <- poi[12,]
# mode <- c("WALK", "TRANSIT")
# max_walk_time <- 60
# departure_datetime <- as.POSIXct("13-05-2019 14:00:00",
#                                  format = "%d-%m-%Y %H:%M:%S")
# 
# # calculate detailed itineraries
# det <- detailed_itineraries(r5r_core = r5r_core,
#                             origins = origins,
#                             destinations = destinations,
#                             mode = mode,
#                             departure_datetime = departure_datetime,
#                             max_walk_time = max_walk_time,
#                             suboptimal_minutes = 8,
#                             shortest_path = FALSE)
# 
# head(det)

## ----detailed head, echo = FALSE, out.width='100%', message = FALSE, eval = FALSE----
# knitr::include_graphics("https://github.com/ipeaGIT/r5r/blob/master/r-package/inst/img/vig_output_detailed.png?raw=true")

## ----message = FALSE----------------------------------------------------------
# # extract OSM network
# street_net <- street_network_to_sf(r5r_core)
# 
# # extract public transport network
# transit_net <- r5r::transit_network_to_sf(r5r_core)
# 
# # plot
# fig <- ggplot() +
#         geom_sf(data = street_net$edges, color='gray85') +
#         geom_sf(data = subset(det, option <4), aes(color=mode)) +
#         facet_wrap(.~option) +
#         theme_void()
# 
# fig

## ----message = FALSE, eval = FALSE--------------------------------------------
# # SAVE image
# ggsave(plot = fig, filename = 'inst/img/vig_detailed_ggplot.png',
#        height = 5, width = 15, units='cm', dpi=200)

## ----ggplot2 output, echo = FALSE, out.width='100%', message = FALSE, eval = FALSE----
# knitr::include_graphics("https://github.com/ipeaGIT/r5r/blob/master/r-package/inst/img/vig_detailed_ggplot.png?raw=true")

## ----message = FALSE, eval = FALSE--------------------------------------------
# library(gtfstools)
# 
# # location of your frequency-based GTFS
# freq_gtfs_file <- system.file("extdata/spo/spo.zip", package = "r5r")
# 
# # read GTFS data
# freq_gtfs <- gtfstools::read_gtfs(freq_gtfs_file)
# 
# # convert from frequencies to time tables
# stop_times_gtfs <- gtfstools::frequencies_to_stop_times(freq_gtfs)
# 
# # save it as a new GTFS.zip file
# gtfstools::write_gtfs(gtfs = stop_times_gtfs,
#                       path = tempfile(pattern = 'stop_times_gtfs', fileext = '.zip'))
# 
# 

## ----message = FALSE----------------------------------------------------------
# r5r::stop_r5(r5r_core)
# rJava::.jgc(R.gc = TRUE)