## ----echo = F----------------------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ## ----eval = F----------------------------------------------------------------- # library(rLakeHabitat) # # #load example depth data # depths <- read.csv("data/example_depths.csv") # #load example outline # outline <- vect("data/example_outline.shp") # # #rarify input data -- example data won't change # clean_depth <- rarify(outline, depths, "x", "y", "z", res = 5) # # #obtain xyz point data from depth contours # contours <- read_sf("~/UW_Research/Project5_Habitat_Mapping/Repositories/rLakeHabitat/data/example_contour.shp") # # contour_depths <- contourPoints(contours, depths = "Z", geometry = "geometry", density = 50) ## ----eval = F----------------------------------------------------------------- # #load example depth data # depths <- read.csv("data/example_depths.csv") # #load example outline # outline <- vect("data/example_outline.shp") # # #interpolate using Inverse Distance Weighted method # DEM <- interpBathy(outline, depths, "x", "y", "z", zeros = F, separation = 10, # crsUnits = "dd", res = 10, method = "IDW", nmax = 6, idp = 2) # plot(DEM) # # #obtain RMSE for IDW interpolation # crossValidate(outline, depths, "x", "y", "z", zeros = F, separation = 10, k = 5, # crsUnits = "dd", res = 10, method = "IDW", nmax = 6, idp = 2) # # #Interpolate using Ordinary Kriging method # DEM <- interpBathy(outline, depths, "x", "y", "z", zeros = F, separation = 10, # crsUnits = "dd", res = 50, nmax = 6, method = "OK", model = "Sph") # plot(DEM) # # #obtain RMSE for OK interpolation # crossValidate(outline, depths, "x", "y", "z", zeros = F, separation = 10, k = 5, # crsUnits = "dd", res = 50, nmax = 6, method = "OK", model = "Sph") ## ----eval = F----------------------------------------------------------------- # #load example temperature profile data # thermo_data <- read.csv("data/example_profile_data.csv") %>% # mutate(date = as.Date(date)) # # #estimate average thermocline depth across sites and dates # estThermo(thermo_data, site = "site", date = "date", depth = "depth", temp = "temp", combine = "all") # # #generate hypsography data, output = 'values' or 'plot' # calcHyps(DEM, DEMunits = 'm', depthUnits = 'ft', by = 1, output = 'values') # # #calculate littoral area # calcLittoral(DEM, secchi = 2, DEMunits = 'm', depthUnits = 'ft', by = 1) # # #calculate shoreline development index # calcSDI(DEM, units = 'm', by = 1) # # #calculate volume of pelagic habitats # calcVolume(DEM, thermo_depth = 4, DEMunits = 'm', depthUnits = 'm', by = 1) # # #calculate volume of pelagic vs. littoral habitat # littoralVol(DEM, secchi = 2, DEMunits = 'm', depthUnits = 'm', by = 1) ## ----eval = F----------------------------------------------------------------- # #generate bathymetry map # bathyMap(DEM, contours = T, units = "m", by = 1) # # #generate animated bathymetry map of littoral area or whole waterbody area across water levels # animBathy(DEM, units = 'm', littoral = T, secchi = 2, by = 1) ## ----eval = F----------------------------------------------------------------- # #generate raster stack from interpolated DEM # raster_stack <- genStack(DEM, by = 1, save = F) #don't save # plot(raster_stack) # # genStack(DEM, by = 1, save = T, file_name = "Example_stack") #save