## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----input-------------------------------------------------------------------- set.seed(1234) library(rNeighborGWAS) # convert "TTN" genotype data into a rNeighborGWAS format data("TTN", package="gaston") x <- gaston::as.bed.matrix(TTN.gen, TTN.fam, TTN.bim) g <- gaston2neiGWAS(x) # simulate "fake_nei" dataset using nei_simu() geno <- g$geno gmap <- g$gmap x <- runif(nrow(geno),1,100) y <- runif(nrow(geno),1,100) smap <- cbind(x,y) grouping <- c(rep(1,nrow(geno)/2), rep(2,nrow(geno)/2), 2) pheno <- nei_simu(geno=geno, smap=smap, scale=43, grouping=grouping, n_causal=50, pveB=0.3, pve=0.6 ) fake_nei <- list() fake_nei[[1]] <- geno fake_nei[[2]] <- gmap fake_nei[[3]] <- smap fake_nei[[4]] <- data.frame(pheno,grouping) names(fake_nei) <- c("geno","gmap","smap","pheno") fake_nei$geno[1:5,1:10] # Note: 0 indicates heterozygotes head(fake_nei$smap) ## ----PVE---------------------------------------------------------------------- scale_seq <- quantile(dist(fake_nei$smap),c(0.2*rep(1:5))) pve_out <- calc_PVEnei(geno=fake_nei$geno, pheno=fake_nei$pheno[,1], smap=fake_nei$smap, scale_seq=scale_seq, addcovar=as.matrix(fake_nei$pheno$grouping), grouping=fake_nei$pheno$grouping ) delta_PVE(pve_out) ## ----GWAS--------------------------------------------------------------------- scale <- 43.9 gwas_out <- neiGWAS(geno=fake_nei$geno, pheno=fake_nei$pheno[,1], gmap=fake_nei$gmap, smap=fake_nei$smap, scale=scale, addcovar=as.matrix(fake_nei$pheno$grouping), grouping=fake_nei$pheno$grouping ) gaston::manhattan(gwas_out) gaston::qqplot.pvalues(gwas_out$p) ## ----LMM, eval=FALSE---------------------------------------------------------- # scale <- 43.9 # g_nei <- nei_coval(geno=fake_nei$geno, smap=fake_nei$smap, # scale=scale, grouping=fake_nei$pheno$grouping # ) # # gwas_out <- nei_lmm(geno=fake_nei$geno, g_nei=g_nei, # pheno=fake_nei$pheno[,1], # addcovar=as.matrix(fake_nei$pheno$grouping) # ) ## ----bin, eval=FALSE---------------------------------------------------------- # fake_nei$pheno[,1][fake_nei$pheno[,1]>mean(fake_nei$pheno[,1])] <- 1 # fake_nei$pheno[,1][fake_nei$pheno[,1]!=1] <- 0 # # pve_out <- calc_PVEnei(geno=fake_nei$geno, pheno=fake_nei$pheno[,1], # smap=fake_nei$smap, scale_seq=scale_seq, # addcovar=as.matrix(fake_nei$pheno$grouping), # grouping=fake_nei$pheno$grouping, # response="binary" # ) # # gwas_out <- neiGWAS(geno=fake_nei$geno, pheno=fake_nei$pheno[,1], # gmap=fake_nei$gmap, smap=fake_nei$smap, # scale=scale, addcovar=as.matrix(fake_nei$pheno$grouping), # grouping=fake_nei$pheno$grouping, # response="binary" # ) # gaston::manhattan(gwas_out) # gaston::qqplot.pvalues(gwas_out$p) # # gwas_out <- nei_lmm(geno=fake_nei$geno, g_nei=g_nei, # pheno=fake_nei$pheno[,1], # addcovar=as.matrix(fake_nei$pheno$grouping), # response="binary" # ) ## ----asymmetry, eval=FALSE---------------------------------------------------- # scale <- 43.9 # g_nei <- nei_coval(geno=fake_nei$geno, smap=fake_nei$smap, # scale=scale, grouping=fake_nei$pheno$grouping # ) # # gwas_out <- nei_lmm(geno=fake_nei$geno, g_nei=g_nei, # pheno=fake_nei$pheno[,1], # addcovar=as.matrix(fake_nei$pheno$grouping), # asym=TRUE)