---
title: "Introduction to rchroma"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Introduction to rchroma}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
```

## Introduction

The rchroma package provides an R interface to ChromaDB, a vector database for storing and querying embeddings. This vignette demonstrates the basic usage of the package.

## Running ChromaDB

Before using rchroma, you need to have a running ChromaDB instance. The easiest way to get started is using Docker:
The easiest way to get started is using the provided Docker helper functions:

```{r eval = FALSE}
chroma_docker_run()
# use chroma_docker_stop() to stop the container
```

This will start a ChromaDB server on `http://localhost:8000`.

For other installation methods and configuration options, please refer to the [ChromaDB documentation](https://docs.trychroma.com/docs/overview/introduction).

## Basic Usage

### Connecting to ChromaDB

First, we need to establish a connection to ChromaDB:

```{r eval=FALSE}
library(rchroma)

# Connect to a local ChromaDB instance
client <- chroma_connect()

# Check the connection
heartbeat(client)
version(client)
```

### Managing Collections

Collections are the main way to organize your data in ChromaDB:

```{r eval=FALSE}
# Create a new collection
create_collection(client, "my_collection")

# List all collections
list_collections(client)

# Get a specific collection
get_collection(client, "my_collection")
```

### Working with Documents

Documents are the basic unit of data in ChromaDB. Each document consists of text content and its associated embedding:

```{r eval=FALSE}
# Add documents with embeddings
docs <- c(
  "apple fruit",
  "banana fruit",
  "carrot vegetable"
)
embeddings <- list(
  c(1.0, 0.0, 0.0), # apple
  c(0.8, 0.2, 0.0), # banana (similar to apple)
  c(0.0, 0.0, 1.0) # carrot (different)
)

# Add documents to the collection
add_documents(
  client,
  "my_collection",
  documents = docs,
  ids = c("doc1", "doc2", "doc3"),
  embeddings = embeddings
)

# Query similar documents using embeddings
results <- query(
  client,
  "my_collection",
  query_embeddings = list(c(1.0, 0.0, 0.0)), # should match apple best
  n_results = 2
)
```

### Updating and Deleting

You can update or delete documents as needed:

```{r eval=FALSE}
# Update embedding separately
update_documents(
  client,
  "my_collection",
  ids = "doc1",
  embeddings = list(c(0.9, 0.1, 0.0)) # slightly different from original apple
)

# Delete documents
delete_documents(client, "my_collection", ids = "doc2") # removes banana
```