## ----global_options, include=FALSE-------------------------------------------- library(knitr) knitr::opts_chunk$set( fig.width = 5, fig.height = 3, warning = FALSE, message = FALSE, out.width = "70%" ) knitr::opts_knit$set(root.dir = tempdir()) pkgs <- c("effectsize", "flextable", "interactions") successfully_loaded <- vapply(pkgs, requireNamespace, FUN.VALUE = logical(1L), quietly = TRUE) can_evaluate <- all(successfully_loaded) if (can_evaluate) { knitr::opts_chunk$set(eval = TRUE) vapply(pkgs, require, FUN.VALUE = logical(1L), quietly = TRUE, character.only = TRUE) } else { knitr::opts_chunk$set(eval = FALSE) } ## ----------------------------------------------------------------------------- head(mtcars) ## ----------------------------------------------------------------------------- library(rempsyc) ## ----------------------------------------------------------------------------- pkgs <- c("effectsize", "flextable", "interactions") install_if_not_installed(pkgs) ## ----------------------------------------------------------------------------- mtcars2 <- lapply(mtcars, scale) |> as.data.frame() ## ----------------------------------------------------------------------------- moderations <- nice_mod( data = mtcars2, response = "mpg", predictor = "gear", moderator = "wt" ) moderations ## ----------------------------------------------------------------------------- (my_table <- nice_table(moderations, highlight = TRUE)) ## ----eval = FALSE------------------------------------------------------------- # # Open in Word # print(my_table, preview = "docx") # # # Save in Word # flextable::save_as_docx(my_table, path = "moderations.docx") ## ----------------------------------------------------------------------------- slopes <- nice_slopes( data = mtcars2, response = "mpg", predictor = "gear", moderator = "wt" ) slopes nice_table(slopes, highlight = TRUE) ## ----------------------------------------------------------------------------- # Moderations nice_mod( data = mtcars2, response = c("mpg", "disp", "hp"), predictor = "gear", moderator = "wt" ) |> nice_table(highlight = TRUE) # Simple slopes nice_slopes( data = mtcars2, response = c("mpg", "disp", "hp"), predictor = "gear", moderator = "wt" ) |> nice_table(highlight = TRUE) ## ----------------------------------------------------------------------------- nice_mod( data = mtcars2, response = "mpg", predictor = "gear", moderator = "wt", covariates = c("am", "vs") ) |> nice_table(highlight = TRUE) ## ----------------------------------------------------------------------------- nice_slopes( data = mtcars2, response = "mpg", predictor = "gear", moderator = "wt", covariates = c("am", "vs") ) |> nice_table(highlight = TRUE) ## ----------------------------------------------------------------------------- # First need to define model for plot function mod <- lm(mpg ~ gear * wt + am + vs, data = mtcars2) # Plot the model library(interactions) interact_plot(mod, pred = "gear", modx = "wt", interval = TRUE) ## ----------------------------------------------------------------------------- mtcars2$am <- mtcars$am ## ----------------------------------------------------------------------------- nice_mod( response = "mpg", predictor = "gear", moderator = "disp", moderator2 = "am", data = mtcars2 ) |> nice_table(highlight = TRUE) ## ----------------------------------------------------------------------------- nice_slopes( data = mtcars2, response = "mpg", predictor = "gear", moderator = "disp", moderator2 = "am" ) |> nice_table(highlight = TRUE) ## ----------------------------------------------------------------------------- model1 <- lm(mpg ~ cyl + wt * hp, mtcars2) model2 <- lm(qsec ~ disp + drat * carb, mtcars2) my.models <- list(model1, model2) nice_lm(my.models) |> nice_table(highlight = TRUE) ## ----------------------------------------------------------------------------- model1 <- lm(mpg ~ gear * wt, mtcars2) model2 <- lm(disp ~ gear * wt, mtcars2) my.models <- list(model1, model2) nice_lm_slopes(my.models, predictor = "gear", moderator = "wt") |> nice_table(highlight = TRUE)