## ----setup, include=FALSE----------------------------------------------------- library(reportRmd) # knitr::opts_chunk$set(message = FALSE, warning = FALSE,dev="cairo_pdf") knitr::opts_chunk$set(message = FALSE, warning = FALSE) ## ----------------------------------------------------------------------------- data("pembrolizumab") rm_covsum(data=pembrolizumab, covs=c('age','sex')) ## ----------------------------------------------------------------------------- rm_covsum(data=pembrolizumab, covs=c('age','sex'),IQR=TRUE) ## ----------------------------------------------------------------------------- rm_covsum(data=pembrolizumab, covs=c('age','sex'),all.stats = TRUE) ## ----------------------------------------------------------------------------- rm_covsum(data=pembrolizumab, maincov = 'sex', covs=c('age','pdl1','change_ctdna_group')) ## ----------------------------------------------------------------------------- rm_covsum(data=pembrolizumab, maincov = 'sex', covs=c('age','pdl1','change_ctdna_group'), show.tests=TRUE) ## ----------------------------------------------------------------------------- rm_covsum(data=pembrolizumab, maincov = 'sex', covs=c('age','change_ctdna_group'), effSize=TRUE) ## ----------------------------------------------------------------------------- rm_covsum(data=pembrolizumab, maincov = 'sex', covs=c('age','pdl1'), testcont='ANOVA', show.tests=TRUE, effSize=TRUE) ## ----------------------------------------------------------------------------- rm_covsum(data=pembrolizumab, maincov = 'sex', covs=c('cohort'), pvalue = FALSE) ## ----------------------------------------------------------------------------- rm_covsum(data=pembrolizumab, maincov = 'sex', covs=c('cohort'), pvalue = FALSE, percentage='row') ## ----------------------------------------------------------------------------- rm_compactsum(data = pembrolizumab, xvars = c("change_ctdna_group", "l_size")) ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars = c("change_ctdna_group", "l_size"), iqr=TRUE) ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars = c("change_ctdna_group", "l_size"), all.stats = T) ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex') ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex', show.tests=TRUE) ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex', effSize = T, show.tests = T) ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex', use_mean = c("pdl1"), effSize = T, show.tests = T) ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex', use_mean = c("pdl1"), digits = 2, digits.cat = 1, effSize = T, show.tests = T) ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','l_size'), grp = 'sex', digits = c("age" = 3, "l_size" = 2), effSize = T, show.tests = T) ## ----------------------------------------------------------------------------- rm_compactsum(data=pembrolizumab, xvars=c('change_ctdna_group','orr'), grp = 'cohort', effSize = T, show.tests = T, percentage = "row") ## ----results = 'asis'--------------------------------------------------------- summary_tab <- rm_compactsum(data=pembrolizumab, xvars=c('change_ctdna_group','orr', 'age'), grp = 'cohort', effSize = T, show.tests = T) cat(attr(summary_tab, "description")) ## ----------------------------------------------------------------------------- rm_uvsum(data=pembrolizumab, response='orr', covs=c('age','pdl1','change_ctdna_group')) ## ----------------------------------------------------------------------------- rm_uvsum(data=pembrolizumab, response='l_size', covs=c('age','cohort')) ## ----------------------------------------------------------------------------- rm_uvsum(data=pembrolizumab, response='orr', covs=c('age','cohort')) ## ----------------------------------------------------------------------------- pembrolizumab$Counts <- rpois(nrow(pembrolizumab),lambda = 3) rm_uvsum(data=pembrolizumab, response='Counts',covs=c('age','cohort')) ## ----------------------------------------------------------------------------- pembrolizumab$length_followup <- rnorm(nrow(pembrolizumab),mean = 72,sd=3) pembrolizumab$log_length_followup <- log(pembrolizumab$length_followup) rm_uvsum(data=pembrolizumab, response='Counts',covs=c('age','cohort'), offset = "log_length_followup") ## ----------------------------------------------------------------------------- rm_uvsum(data=pembrolizumab, response='Counts', type='negbin', covs=c('age','cohort'), offset = "log_length_followup") ## ----------------------------------------------------------------------------- rm_uvsum(data=pembrolizumab, response=c('os_time','os_status'), covs=c('age','pdl1','change_ctdna_group'),whichp = "levels") ## ----------------------------------------------------------------------------- rm_uvsum(data=pembrolizumab, response=c('os_time','os_status'), covs=c('age','pdl1','change_ctdna_group'), type='crr') ## ----------------------------------------------------------------------------- data("ctDNA") rm_uvsum(response = 'size_change', covs=c('time','ctdna_status'), gee=TRUE, id='id', corstr="exchangeable", family=gaussian("identity"), data=ctDNA,showN=TRUE) ## ----------------------------------------------------------------------------- rm_uvsum(response = 'orr', covs=c('age'), data=pembrolizumab,returnModels = TRUE) ## ----------------------------------------------------------------------------- mList <- rm_uvsum(response = 'orr', covs=c('age'), data=pembrolizumab,returnModels = TRUE) head(mList$age$data) ## ----------------------------------------------------------------------------- rm_uvsum(response = 'orr', covs=c('age','sex','pdl1'), data=pembrolizumab,p.adjust = 'fdr') ## ----------------------------------------------------------------------------- glm_fit <- glm(orr~change_ctdna_group+pdl1+age, family='binomial', data = pembrolizumab) rm_mvsum(glm_fit, showN = TRUE, vif=TRUE) ## ----------------------------------------------------------------------------- rm_mvsum(glm_fit, showN = TRUE, vif=TRUE,p.adjust = 'holm') ## ----------------------------------------------------------------------------- uvsumTable <- rm_uvsum(data=pembrolizumab, response='orr', covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE) glm_fit <- glm(orr~change_ctdna_group+pdl1, family='binomial', data = pembrolizumab) mvsumTable <- rm_mvsum(glm_fit, showN = TRUE,tableOnly = TRUE) rm_uv_mv(uvsumTable,mvsumTable) ## ----------------------------------------------------------------------------- uvsumTable <- rm_uvsum(data=pembrolizumab, response='orr', covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE,p.adjust='holm') glm_fit <- glm(orr~change_ctdna_group+pdl1, family='binomial', data = pembrolizumab) mvsumTable <- rm_mvsum(glm_fit,tableOnly = TRUE,p.adjust='holm') rm_uv_mv(uvsumTable,mvsumTable) ## ----------------------------------------------------------------------------- mvsumTable <- rm_mvsum(glm_fit, showN = TRUE,tableOnly = TRUE) names(mvsumTable)[1] <-'Predictor' outTable(mvsumTable) ## ----------------------------------------------------------------------------- cohortA <- rm_uvsum(data=subset(pembrolizumab,cohort=='A'), response = 'pdl1', covs=c('age','sex'), tableOnly = T) cohortA$Cohort <- 'Cohort A' cohortE <- rm_uvsum(data=subset(pembrolizumab,cohort=='E'), response = 'pdl1', covs=c('age','sex'), tableOnly = T) cohortE$Cohort <- 'Cohort E' nestTable(rbind(cohortA,cohortE),head_col = 'Cohort',to_col = 'Covariate') ## ----------------------------------------------------------------------------- long_table <- rm_compactsum(data=pembrolizumab,xvars = c(age,sex,cohort,pdl1,tmb,baseline_ctdna,change_ctdna_group,orr,cbr)) scrolling_table(long_table,pixelHeight = 300) ## ----------------------------------------------------------------------------- rm_survsum(data=pembrolizumab,time='os_time',status='os_status', group="sex",survtimes=seq(12,36,12),survtimeunit='months') ## ----------------------------------------------------------------------------- rm_survtime(data=pembrolizumab,time='os_time',status='os_status', strata="sex",survtimes=c(12,24),survtimeunit='mo',type='PH') ## ----------------------------------------------------------------------------- rm_survtime(data=pembrolizumab,time='os_time',status='os_status', covs='age', strata="sex",survtimes=c(12,24),survtimeunit='mo',type='PH') ## ----------------------------------------------------------------------------- rm_survdiff(data=pembrolizumab,time='os_time',status='os_status', covs='sex',strata='cohort',digits=1) ## ----------------------------------------------------------------------------- rm_covsum(data=ctDNA, covs=c('cohort','ctdna_status','size_change')) ## ----------------------------------------------------------------------------- ctDNA_names <- data.frame(var=names(ctDNA), label=c('Patient ID', 'Study Cohort', 'Change in ctDNA since baseline', 'Number of weeks on treatment', 'Percentage change in tumour measurement')) ctDNA <- set_labels(ctDNA,ctDNA_names) rm_covsum(data=ctDNA, covs=c('cohort','ctdna_status','size_change')) ## ----------------------------------------------------------------------------- ctDNA <- set_var_labels(ctDNA, cohort="A new cohort label") rm_covsum(data=ctDNA, covs=c('cohort','ctdna_status','size_change')) ## ----------------------------------------------------------------------------- var_labels <- extract_labels(ctDNA) var_labels ## ----------------------------------------------------------------------------- library(ggplot2) p <- ggplot(data=ctDNA,aes(x=ctdna_status,y=size_change,colour=cohort))+ geom_point() replace_plot_labels(p) ## ----------------------------------------------------------------------------- ctDNA <- clear_labels(ctDNA) ## ----eval=FALSE,echo=TRUE----------------------------------------------------- # plotuv(data=pembrolizumab, response='orr', # covs=c('age','cohort','pdl1','change_ctdna_group')) ## ----eval=FALSE,echo=FALSE---------------------------------------------------- # plotuv(data=pembrolizumab, response='orr', # covs=c('age','cohort','pdl1','change_ctdna_group')) # ggsave('images/plotuv.png',scale = 0.5,dpi = 300) ## ----eval=FALSE,echo=TRUE----------------------------------------------------- # plotuv(data = pembrolizumab, covs=c('age','cohort','pdl1','change_ctdna_group'), showN = T) ## ----eval=FALSE,echo=FALSE---------------------------------------------------- # plotuv(data = pembrolizumab, covs=c('age','cohort','pdl1','change_ctdna_group'), showN = T) # ggsave('images/plotuv_nores.png',scale = 0.5,dpi = 300) ## ----eval=F,echo=T------------------------------------------------------------ # ggkmcif2(response = c('os_time','os_status'), # cov='cohort', # data=pembrolizumab) ## ----eval=F,echo=FALSE-------------------------------------------------------- # ggkmcif2(response = c('os_time','os_status'), # cov='cohort', # data=pembrolizumab) # ggsave('images/ggkmcif.png',dpi=300,width = 5,height = 5) # p <- ggkmcif2(response = c('os_time','os_status'), # cov='cohort', # data=pembrolizumab,returns = T) # plot(p[[1]]) # ggsave('images/ggkmcif_sm.png',scale = 0.5) ## ----eval=F,echo=T------------------------------------------------------------ # forestplotUV(response="orr", covs=c("change_ctdna_group", "sex", "age", "l_size"), # data=pembrolizumab, family='binomial') ## ----eval=F,echo=FALSE-------------------------------------------------------- # forestplotUV(response="orr", covs=c("change_ctdna_group", "sex", "age", "l_size"), # data=pembrolizumab, family='binomial') # ggsave('images/forestuv.png', scale = 0.5) ## ----eval=F,echo=T------------------------------------------------------------ # glm_fit <- glm(orr~change_ctdna_group+pdl1+age, # family='binomial', # data = pembrolizumab) # forestplotMV(glm_fit) ## ----eval=F,echo=FALSE-------------------------------------------------------- # glm_fit <- glm(orr~change_ctdna_group+pdl1+age, # family='binomial', # data = pembrolizumab) # forestplotMV(glm_fit) # ggsave('images/forestmv.png', scale = 0.5) ## ----eval=F,echo=T------------------------------------------------------------ # UVp = forestplotUV(response="orr", covs=c("change_ctdna_group", "sex", "age", # "l_size"), data=pembrolizumab, family='binomial') # MVp = forestplotMV(glm(orr~change_ctdna_group+sex+age+l_size, # data=pembrolizumab,family = 'binomial')) # forestplotUVMV(UVp, MVp) ## ----eval=F,echo=F------------------------------------------------------------ # UVp = forestplotUV(response="orr", covs=c("change_ctdna_group", "sex", "age", # "l_size"), data=pembrolizumab, family='binomial') # MVp = forestplotMV(glm(orr~change_ctdna_group+sex+age+l_size, # data=pembrolizumab,family = 'binomial')) # forestplotUVMV(UVp, MVp) # ggsave('images/forestuvmv.png', scale = 0.5) ## ----eval=F,echo=T------------------------------------------------------------ # uvFP <- forestplotUV(data=pembrolizumab, response='orr', # covs=c('age','sex','pdl1','change_ctdna_group')) # # glm_fit <- glm(orr~change_ctdna_group+pdl1, # family='binomial', # data = pembrolizumab) # mvFP <- forestplotMV(glm_fit) # # forestplotUVMV(uvFP,mvFP,showN=F,showEvent=F,colours=c("orange","black","blue"),logScale=F) ## ----eval=F,echo=F------------------------------------------------------------ # uvFP <- forestplotUV(data=pembrolizumab, response='orr', # covs=c('age','sex','pdl1','change_ctdna_group')) # # glm_fit <- glm(orr~change_ctdna_group+pdl1, # family='binomial', # data = pembrolizumab) # mvFP <- forestplotMV(glm_fit) # # forestplotUVMV(uvFP,mvFP,showN=F,showEvent=F,colours=c("orange","black","blue"),logScale=F) # ggsave('images/forestuvmvlin.png', scale = 0.5) ## ----------------------------------------------------------------------------- excelCol(G,AB,Az) ## ----------------------------------------------------------------------------- excelColLetters(c(7,28,52)) ## ----------------------------------------------------------------------------- rm_uvsum(response = 'baseline_ctdna', covs=c('age','sex','l_size','pdl1','tmb'), data=pembrolizumab) options('reportRmd.digits'=1) rm_uvsum(response = 'baseline_ctdna', covs=c('age','sex','l_size','pdl1','tmb'), data=pembrolizumab)