## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", out.width = "100%" ) ## ----setup-------------------------------------------------------------------- library(sarp.snowprofile.alignment) ## ----------------------------------------------------------------------------- ## Compute alignment: dtwAlignment <- dtwSP(SPpairs$A_modeled, SPpairs$A_manual, open.end = FALSE) ## ----eval=FALSE--------------------------------------------------------------- # ## Plot alignment: # plotSPalignment(dtwAlignment = dtwAlignment) ## ----echo=FALSE--------------------------------------------------------------- knitr::include_graphics("figures/alignment.png") ## ----echo=FALSE, out.width="100%"--------------------------------------------- knitr::include_graphics("figures/legend_gtype.png") ## ----eval=FALSE--------------------------------------------------------------- # ## Inspect local cost: # plotCostDensitySP(dtwAlignment) ## ----echo=FALSE--------------------------------------------------------------- knitr::include_graphics("figures/costDensity.png") ## ----------------------------------------------------------------------------- dtwAlignment$sim <- simSP(dtwAlignment$reference, dtwAlignment$queryWarped, verbose = TRUE, simType = "HerlaEtAl2021") ## ----medoid, eval=TRUE-------------------------------------------------------- ## rescaling and resampling of the snow profiles: setRR <- reScaleSampleSPx(SPgroup)$set ## compute the pairwise distance matrix: distmat <- distanceSP(setRR) ## hierarchichal clustering: setRR_hcl <- stats::hclust(distmat, method = "complete") ## ----echo=FALSE, out.width="100%"--------------------------------------------- knitr::include_graphics("figures/cluster_hierarchy.png") ## ----echo=FALSE, eval=FALSE--------------------------------------------------- # ## This can be used to produce the cluster hierarchy plot: # # ## prepare plot: # cluster_colors <- c("dark orange", "blue", "dark green", "red") # setRR_dend <- stats::as.dendrogram(setRR_hcl) # dendextend::labels_colors(setRR_dend) <- cluster_colors[stats::cutree(setRR_hcl, 4)[order.dendrogram(setRR_dend)]] # dendextend::labels_cex(setRR_dend) <- 2.5 # dendextend::labels(setRR_dend) <- seq(12) # # layout(matrix(c(1, 1, 2, 2), 2, 2, byrow = T), heights = c(1, 2)) # # ## plot hierarchy # plot(setRR_dend, yaxt = "n", xlim = c(1, nrow(distmat))) # mtext("Cluster hierarchy", side = 2, line = 1) # # ## plot profiles # plot(setRR[order.dendrogram(setRR_dend)], SortMethod = 'unsorted', box = F, ylab = "", # yPadding = 0, xPadding = 0, xaxs = 'i', yaxs = 'i') # mtext("Rescaled snow height", side = 2, line = 1, las = 0) # mtext("Individual snow profiles", side = 1, line = 2) # # ## plot vertical lines between most dominant clusters # abline(v = 4.5, lwd = 3) # abline(v = 7.5, lwd = 2, lty = "dashed") # abline(v = 9.5, lwd = 2, lty = "dotted") # ## ----eval=TRUE---------------------------------------------------------------- unname(medoidSP(distmat = distmat[1:4])) ## ----eval=FALSE--------------------------------------------------------------- # fit <- smacof::mds(as.dist(distmat), type = "ordinal") ## ----echo=FALSE, out.width="100%"--------------------------------------------- knitr::include_graphics("figures/configuration_plots.png")