## ----setup, include=FALSE----------------------------------------------------- library(scPipeline) library(Seurat) library(magrittr) library(ReactomeGSA) ## ----Read10X data------------------------------------------------------------- counts_data <- Read10X(data.dir = "../inst/extdata", gene.column = 1) ## ----Seurat analysis, echo=FALSE---------------------------------------------- so <- SeuratPreprocess(counts_data) so <- SeuratLowDim(so) ## ----Violin plot of known genes, echo=FALSE----------------------------------- VlnPlot(so, features = c("MS4A1", "CD79A")) ## ----Feature plot of known genes, echo=FALSE---------------------------------- FeaturePlot(so, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A")) ## ----Marker analysis, echo=FALSE---------------------------------------------- #Compute intense step #seurat_markers <- SeuratMarkers(so) ## ----Heatmap of markers across clusters, echo=FALSE--------------------------- #Uncomment if you run the above chunk of finding markers # pbmc.markers <- seurat_markers[[1]] # pbmc.markers %>% # group_by(cluster) %>% # dplyr::filter(avg_log2FC > 1) %>% # slice_head(n = 10) %>% # ungroup() -> top10 # DoHeatmap(so, features = top10$gene) + NoLegend() ## ----Pathway analysis, echo=FALSE--------------------------------------------- # Needs internet connection to access Reactome database #seurat_reactome <- ReactomeData(so) ## ----Pathways expression------------------------------------------------------ #Uncomment if you run the above chunk of finding markers #head(seurat_reactome[[2]], n = 3) ## ----Pathways min max--------------------------------------------------------- #Uncomment if you run the above chunk of finding markers #head(seurat_reactome[[3]], n = 3)