## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", out.width = "100%" ) # preloading library(sdcSpatial) ## ----------------------------------------------------------------------------- library(sdcSpatial) ## ----------------------------------------------------------------------------- data("enterprises") head(enterprises) ## ----------------------------------------------------------------------------- summary(enterprises) ## ----------------------------------------------------------------------------- sp::plot(enterprises) ## ----------------------------------------------------------------------------- production <- sdc_raster(enterprises, "production", r = 500) plot(production, value="mean", sensitive=FALSE, main="mean production") ## ----------------------------------------------------------------------------- raster::plot(production$value[[1:3]]) ## ----------------------------------------------------------------------------- print(production) ## ----------------------------------------------------------------------------- production$min_count <- 5 production$max_risk <- 0.9 # or equally production <- sdc_raster(enterprises, "production" , r = 500, min_count = 5, max_risk = 0.9) sensitivity_score(production) ## ----------------------------------------------------------------------------- plot(production) sensitive_cells <- is_sensitive(production) ## ----------------------------------------------------------------------------- production_smoothed <- protect_smooth(production, bw = 500) plot(production_smoothed) ## ----------------------------------------------------------------------------- production_safe <- remove_sensitive(production_smoothed) sensitivity_score(production_safe) # check, double check ## ----------------------------------------------------------------------------- mean_production <- mean(production_safe) mean_production <- raster::disaggregate(mean_production, 10, "bilinear") # generated with R >= 3.6 # col <- hcl.colors(10, "YlOrRd", rev = TRUE) col <- c("#FFFFC8", "#FEF1B2", "#FADC8A", "#F7C252", "#F5A400", "#F18000", "#EB5500", "#D12D00", "#A90D00", "#7D0025") raster::plot(mean_production, col=col) # library(leaflet) # leaflet() %>% # leaflet::addTiles() %>% # leaflet::addRasterImage(mean_production, colors = col, opacity = 0.5) ## ----------------------------------------------------------------------------- fined <- sdc_raster(enterprises, "fined", min_count = 5, r = 200, max_risk = 0.8) print(fined) ## ----------------------------------------------------------------------------- # col <- hcl.colors(10, rev=TRUE) # generated with R >= 3.6 col <- c("#FDE333", "#BBDD38", "#6CD05E", "#00BE7D", "#00A890" , "#008E98", "#007094", "#185086", "#422C70", "#4B0055") plot(fined, "mean", col=col) ## ----------------------------------------------------------------------------- fined_qt <- protect_quadtree(fined) plot(fined_qt, col=col) ## ----------------------------------------------------------------------------- fined_smooth <- protect_smooth(fined, bw = 500, keep_resolution=FALSE) plot(fined_smooth, col = col) sensitivity_score(fined_smooth)