## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(semboottools) library(lavaan) ## ----eval = FALSE------------------------------------------------------------- # parameterEstimates_boot(object, # level = .95, # standardized = FALSE, # boot_org_ratio = FALSE, # boot_ci_type = c("perc", "bc", "bca.simple"), # save_boot_est = TRUE, # boot_pvalue = TRUE, # boot_pvalue_min_size = 1000, # ...) ## ----------------------------------------------------------------------------- # Set seed for reproducibility set.seed(1234) # Generate data n <- 1000 x <- runif(n) - 0.5 m <- 0.20 * x + rnorm(n) y <- 0.17 * m + rnorm(n) dat <- data.frame(x, y, m) # Specify mediation model in lavaan syntax mod <- ' m ~ a * x y ~ b * m + cp * x ab := a * b total := a * b + cp ' ## ----------------------------------------------------------------------------- # Ensure bootstrap estimates are stored fit <- sem(mod, data = dat, fixed.x = FALSE) fit <- store_boot(fit) est_boot <- parameterEstimates_boot(fit) print(est_boot) ## ----eval = FALSE------------------------------------------------------------- # # # Change confidence level to 99% # est_boot <- parameterEstimates_boot(fit, level = 0.99) # # Use bias-corrected (BC) bootstrap confidence intervals # est_boot <- parameterEstimates_boot(fit, boot_ci_type = "bc") # # Turn off asymmetric bootstrap p-values # est_boot <- parameterEstimates_boot(fit, boot_pvalue = FALSE) # # Do not save bootstrap estimates (for memory saving) # est_boot <- parameterEstimates_boot(fit, save_boot_est = FALSE) # # Compute and display bootstrap-to-original CI ratio # est_boot <- parameterEstimates_boot(fit, boot_org_ratio = TRUE) # # Combine options: BC CI, 99% level, no p-values # est_boot <- parameterEstimates_boot(fit, # level = 0.99, # boot_ci_type = "bc", # boot_pvalue = FALSE) ## ----eval = FALSE------------------------------------------------------------- # # Print with more decimal places (e.g., 5 digits) # print(est_boot, nd = 5) # # Print in lavaan-style text format (similar to summary()) # print(est_boot, output = "text") # # Print as a clean data frame table # print(est_boot, output = "table") # # Drop specific columns (e.g., "Z") in lavaan.printer format # print(est_boot, drop_cols = "Z") # # Combine options: 5 decimal digits, text format # print(est_boot, nd = 5, output = "text")