## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup--------------------------------------------------------------------
library(semboottools)
library(lavaan)

## ----eval = FALSE-------------------------------------------------------------
# parameterEstimates_boot(object,
#                         level = .95,
#                         standardized = FALSE,
#                         boot_org_ratio = FALSE,
#                         boot_ci_type = c("perc", "bc", "bca.simple"),
#                         save_boot_est = TRUE,
#                         boot_pvalue = TRUE,
#                         boot_pvalue_min_size = 1000,
#                         ...)

## -----------------------------------------------------------------------------
# Set seed for reproducibility
set.seed(1234)

# Generate data
n <- 1000
x <- runif(n) - 0.5
m <- 0.20 * x + rnorm(n)
y <- 0.17 * m + rnorm(n)
dat <- data.frame(x, y, m)

# Specify mediation model in lavaan syntax
mod <- '
  m ~ a * x
  y ~ b * m + cp * x
  ab := a * b
  total := a * b + cp
'

## -----------------------------------------------------------------------------
# Ensure bootstrap estimates are stored
fit <- sem(mod, data = dat, fixed.x = FALSE)
fit <- store_boot(fit) 
est_boot <- parameterEstimates_boot(fit)
print(est_boot)

## ----eval = FALSE-------------------------------------------------------------
# 
# # Change confidence level to 99%
# est_boot <- parameterEstimates_boot(fit, level = 0.99)
# # Use bias-corrected (BC) bootstrap confidence intervals
# est_boot <- parameterEstimates_boot(fit, boot_ci_type = "bc")
# # Turn off asymmetric bootstrap p-values
# est_boot <- parameterEstimates_boot(fit, boot_pvalue = FALSE)
# # Do not save bootstrap estimates (for memory saving)
# est_boot <- parameterEstimates_boot(fit, save_boot_est = FALSE)
# # Compute and display bootstrap-to-original CI ratio
# est_boot <- parameterEstimates_boot(fit, boot_org_ratio = TRUE)
# # Combine options: BC CI, 99% level, no p-values
# est_boot <- parameterEstimates_boot(fit,
#                                     level = 0.99,
#                                     boot_ci_type = "bc",
#                                     boot_pvalue = FALSE)

## ----eval = FALSE-------------------------------------------------------------
# # Print with more decimal places (e.g., 5 digits)
# print(est_boot, nd = 5)
# # Print in lavaan-style text format (similar to summary())
# print(est_boot, output = "text")
# # Print as a clean data frame table
# print(est_boot, output = "table")
# # Drop specific columns (e.g., "Z") in lavaan.printer format
# print(est_boot, drop_cols = "Z")
# # Combine options: 5 decimal digits, text format
# print(est_boot, nd = 5, output = "text")