--- title: "parameterEstimates_boot" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{parameterEstimates_boot} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(semboottools) library(lavaan) ``` ## Function Syntax ```{r eval = FALSE} parameterEstimates_boot(object, level = .95, standardized = FALSE, boot_org_ratio = FALSE, boot_ci_type = c("perc", "bc", "bca.simple"), save_boot_est = TRUE, boot_pvalue = TRUE, boot_pvalue_min_size = 1000, ...) ``` ## Arguments | Argument | Description | |-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | `object` | A model fitted by `lavaan`. | | `level` | Confidence level for the confidence intervals. For example, `.95` gives 95% confidence intervals. | | `standardized` | Whether to return standardized estimates. Same as in `lavaan::parameterEstimates()`. You can use `"std.all"`, `"std.lv"`, etc. For detailed standardized results with CIs, use `standardizedSolution_boot()` instead. | | `boot_org_ratio` | Whether to calculate how wide the bootstrap confidence interval is compared to the original confidence interval (from delta method). Useful to compare the two methods. | | `boot_ci_type` | Method for forming bootstrap confidence intervals. `"perc"` gives percentile intervals; `"bc"` and `"bca.simple"` give bias-corrected intervals. | | `save_boot_est` | Whether to save the bootstrap estimates in the result. Saved in attributes `boot_est_ustd` (free parameters) and `boot_def` (user-defined parameters) if `TRUE`. | | `boot_pvalue` | Whether to compute asymmetric *p*-values based on bootstrap results. Only available when percentile confidence intervals are used. | | `boot_pvalue_min_size` | Minimum number of valid bootstrap samples needed to compute asymmetric *p*-values. If fewer samples are available, *p*-values will not be computed and will be shown as `NA`. | | `...` | Additional arguments passed to `lavaan::parameterEstimates()`. | ## Example ### Data and Model ```{r} # Set seed for reproducibility set.seed(1234) # Generate data n <- 1000 x <- runif(n) - 0.5 m <- 0.20 * x + rnorm(n) y <- 0.17 * m + rnorm(n) dat <- data.frame(x, y, m) # Specify mediation model in lavaan syntax mod <- ' m ~ a * x y ~ b * m + cp * x ab := a * b total := a * b + cp ' ``` ### Basic usage: default settings ```{r} # Ensure bootstrap estimates are stored fit <- sem(mod, data = dat, fixed.x = FALSE) fit <- store_boot(fit) est_boot <- parameterEstimates_boot(fit) print(est_boot) ``` ### parameterEstimates_boot(): Different Options ```{r eval = FALSE} # Change confidence level to 99% est_boot <- parameterEstimates_boot(fit, level = 0.99) # Use bias-corrected (BC) bootstrap confidence intervals est_boot <- parameterEstimates_boot(fit, boot_ci_type = "bc") # Turn off asymmetric bootstrap p-values est_boot <- parameterEstimates_boot(fit, boot_pvalue = FALSE) # Do not save bootstrap estimates (for memory saving) est_boot <- parameterEstimates_boot(fit, save_boot_est = FALSE) # Compute and display bootstrap-to-original CI ratio est_boot <- parameterEstimates_boot(fit, boot_org_ratio = TRUE) # Combine options: BC CI, 99% level, no p-values est_boot <- parameterEstimates_boot(fit, level = 0.99, boot_ci_type = "bc", boot_pvalue = FALSE) ``` ### print(): Different Options ```{r eval = FALSE} # Print with more decimal places (e.g., 5 digits) print(est_boot, nd = 5) # Print in lavaan-style text format (similar to summary()) print(est_boot, output = "text") # Print as a clean data frame table print(est_boot, output = "table") # Drop specific columns (e.g., "Z") in lavaan.printer format print(est_boot, drop_cols = "Z") # Combine options: 5 decimal digits, text format print(est_boot, nd = 5, output = "text") ```