## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(semboottools) library(lavaan) ## ----eval = FALSE------------------------------------------------------------- # standardizedSolution_boot(object, # level = .95, # type = "std.all", # boot_delta_ratio = FALSE, # boot_ci_type = c("perc", "bc", "bca.simple"), # save_boot_est_std = TRUE, # boot_pvalue = TRUE, # boot_pvalue_min_size = 1000, # ...) ## ----------------------------------------------------------------------------- # Set seed for reproducibility set.seed(1234) # Generate data n <- 1000 x <- runif(n) - 0.5 m <- 0.20 * x + rnorm(n) y <- 0.17 * m + rnorm(n) dat <- data.frame(x, y, m) # Specify mediation model in lavaan syntax mod <- ' m ~ a * x y ~ b * m + cp * x ab := a * b total := a * b + cp ' ## ----------------------------------------------------------------------------- # (should use ≥2000 in real studies) fit <- sem(mod, data = dat, se = "boot", bootstrap = 500) std_boot <- standardizedSolution_boot(fit) print(std_boot) ## ----------------------------------------------------------------------------- # this function also do not require 'se = "boot"' when fitting the model fit2 <- sem(mod, data = dat, fixed.x = FALSE) fit2 <- store_boot(fit2, R = 500) std_boot2 <- standardizedSolution_boot(fit2) print(std_boot) ## ----eval = FALSE------------------------------------------------------------- # # Change confidence level # std_boot <- standardizedSolution_boot(fit, level = 0.99) # # Use bias-corrected bootstrap CIs # std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bc") # std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bca.simple") # # Compute delta ratio # std_boot <- standardizedSolution_boot(fit, boot_delta_ratio = TRUE) # # Do not save bootstrap estimates # std_boot <- standardizedSolution_boot(fit, save_boot_est_std = FALSE) # # Turn off asymmetric bootstrap p-values # std_boot <- standardizedSolution_boot(fit, boot_pvalue = FALSE) # # Combine options # std_boot <- standardizedSolution_boot(fit, # boot_ci_type = "bc", # boot_delta_ratio = TRUE) ## ----eval = FALSE------------------------------------------------------------- # # # Print standardized solution in friendly format # print(std_boot, output = "text") # # Print with more decimal places (e.g., 5 decimal digits) # print(std_boot, nd = 5) # # Print only bootstrap confidence intervals # print(std_boot, boot_ci_only = TRUE) # # Print both unstandardized and standardized solution # print(std_boot, standardized_only = FALSE) # # Combine options: more decimals + show both solutions # print(std_boot, nd = 4, standardized_only = FALSE) # # Combine options: show only bootstrap CI, 5 decimal places # print(std_boot, boot_ci_only = TRUE, nd = 5)