---
title: "Searching for One Bound"
author: "Shu Fai Cheung"
date: "2023-05-04"
output:
  rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Searching for One Bound}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
bibliography: semlbci_technical_references.bib
csl: apa.csl
---



# Introduction

This vignette is based on the
[technical appendix](https://osf.io/zjysd)
hosted at the [OSF project site](https://osf.io/b9a2p/)
of @cheung_semlbci_2023, associated with the package
[`semlbci`](https://sfcheung.github.io/semlbci/).
It presents how to use
`ci_bound_wn_i()` directly to search for one
bound (limit) of a likelihood-based confidence
interval (LBCI). This function is not to be used by
common users. However, for advanced users interested
in customizing the optimization, examining the search
in details, or just to know more about the implementation,
they can try `ci_bound_wn_i()` directly.

For the workflows of
`semlbci()` and `ci_bound_wn_i()`,
please refer to
[technical_workflow](https://sfcheung.github.io/semlbci/articles/technical_workflow.html).
This vignette only illustrates how to use
`ci_bound_wn_i()`.

# Examples

## A Simple Mediation Model

The dataset `simple_med` from `semlbci` is used to fit
a simple mediation model:


```r
library(semlbci)
library(lavaan)
dat <- simple_med
mod <-
"
m ~ a*x
y ~ b*m
ab := a*b
"
fit <- sem(model = mod,
           data = dat)
```

First, use `set_constraint()` to set the constraint
on the likelihood ratio test used by the method
proposed by @wu_adjusted_2012 and adapted by
@pek_profile_2015, with `ciperc` set to
the level of confidence of the LBCI to be formed
(.95 for 95%):


```r
fn_constraint <- set_constraint(fit,
                                ciperc = .95)
```

### Find the LBCI of a Regression Coefficient

To find the lower bound of the LBCI of, say, `y ~ m`,
we first check the row number of this parameter in
the *parameter table*:


```r
parameterTable(fit)
#>   id lhs op rhs user block group free ustart exo label plabel  start    est
#> 1  1   m  ~   x    1     1     1    1     NA   0     a   .p1.  1.676  1.676
#> 2  2   y  ~   m    1     1     1    2     NA   0     b   .p2.  0.535  0.535
#> 3  3   m ~~   m    0     1     1    3     NA   0         .p3. 34.710 34.710
#> 4  4   y ~~   y    0     1     1    4     NA   0         .p4. 40.119 40.119
#> 5  5   x ~~   x    0     1     1    0     NA   1         .p5.  0.935  0.935
#> 6  6  ab := a*b    1     0     0    0     NA   0    ab         0.000  0.897
#>      se
#> 1 0.431
#> 2 0.073
#> 3 3.471
#> 4 4.012
#> 5 0.000
#> 6 0.261
```

This parameter is in the 2^nd^ row.

We then check the number of free parameters in this table,
ignoring any
equality constraints. This can be done by counting the
number of nonzero entries in the column `free`.
In this model, the number of free parameters is 4.

We can then call `ci_bound_wn_i()`:


```r
out_lb <- ci_bound_wn_i(i = 2,
                        npar = 4,
                        sem_out = fit,
                        f_constr = fn_constraint,
                        which = "lbound",
                        verbose = TRUE,
                        ciperc = .95)
```

The output is a `cibound`-class object with a `print` method
for printing diagnostic information.


```r
out_lb
#> Target Parameter:	y ~ m (group = 1, block = 1)
#> Position:		2
#> Which Bound:		Lower Bound
#> Method:			Wu-Neale-2012
#> Confidence Level:	0.95
#> Achieved Level:		0.950000000016768
#> Standardized:		No
#> Likelihood-Based Bound:	0.39073
#> Wald Bound:		0.39142
#> Point Estimate:		0.53508
#> Ratio to Wald Bound:	1.00482
#> 
#> -- Check --
#> Level achieved?		Yes (Difference: 1.6768e-11; Tolerance: 5e-04)
#> Solution admissible?	Yes
#> Direction valid?	Yes
#> 
#> -- Optimization Information --
#> Solver Status:		3
#> Convergence Message:	NLOPT_FTOL_REACHED: Optimization stopped because ftol_rel or ftol_abs (above) was reached.
#> Iterations:		3
#> Termination Conditions:
#> 	xtol_rel: 1e-05
#> 	ftol_rel: 1e-05
#> 	maxeval:  500
#> 
#> -- Parameter Estimates --
#>              a        b    m~~m     y~~y
#> Start  1.67613  0.39142 34.7103 40.88953
#> Final  1.67613  0.39073 34.7103 40.88955
#> Change 0.00000 -0.00069  0.0000  0.00002
#> 
#> Bound before check:	0.39073
#> Status Code:		0
#> Call: ci_bound_wn_i(i = 2, npar = 4, sem_out = fit, f_constr = fn_constraint, 
#>     which = "lbound", ciperc = 0.95, verbose = TRUE)
```



The printout is explained briefly below:

- `Target Parameter`:

  The target parameter, in `lavaan` syntax form.

- `Position`:

  The position of the target parameter in the parameter
  table (the row number).

- `Which Bound`:

  Whether the lower bound (limit) or upper bound (limit) was
  requested.

- `Method`:

  The method used. Currently, only the method proposed
  by @wu_adjusted_2012 and adapted by @pek_profile_2015
  is supported.

- `Confidence Level`:

  The level of confidence requested.

- `Achieved Level`:

  One minus the *p*-value of the likelihood ratio test when
  the
  target parameter (or function of parameter) is fixed to
  the bound found. This
  value should be close to `Confidence Level`, although
  a small difference is expected and allowed.

- `Standardized`:

  Whether the bound in the standardized solution is requested.

- `Likelihood-Based Bound`:

  The bound found. Set to `NA` if the status code is not
  equal to 1.

- `Wald Bound`:

  The original bound, which is the bound of the Wald
  confidence
  interval, or delta-method confidence for a user-defined
  parameter or the standardized solution.

- `Point Estimate`:

  The point estimate in the original solution.

- `Ratio to Wald Bound`:

  The ratio of the distance of `Likelihood-Based Bound`
  from `Point Estimate` to the distance of
  `Wald Bound` from `Point Estimate`. If greater than
  one, the `Likelihood-Based Bound` is farther away
  from the point estimate than the `Wald Bound`. If
  less than one, the `Likelihood-Based Bound` is closer
  to the point estimate than the `Wald Bound`.

- `Level achieved`:

  Whether `Achieved Level` is close enough to `Confidence Level`,
  defined by whether the absolute difference between the
  *p*-value of
  the likelihood ratio test and 1 - `ciperc` is less than
  or equal to `p_tol` (default is 5e-4). If not, the status
  code will be set to 1.

- `Check`:

  Whether the solution (see below) is admissible, defined by
  setting in `lavaan` `check.post = TRUE` (all variances non-negative,
  all model-implied covariance matrices are positive semidefinite),
  `check.vcov = TRUE` (the variance-covariance matrix of free parameters
  is positive definite), and `check.start = TRUE` (used to test
  the consistency of the solution). If the solution fails any of these
  tests, the status code will be set to 1.

- `Direction valid?`:

  Whether the direction of the bound is valid: the lower
  bound is less than the point estimate, or the upper
  bound is greater than the point estimate. If invalid,
  the status code will be set to 1.

- `Optimization Information`:

  This section prints information returned by
  `nloptr::nloptr()`, such as the status code, the convergence message
  (which criterion was met), the number of iterations, and the termination
  conditions set (`xtol_rel`, `ftol_rel`, and `maxevel` are arguments
  of `nloptr::nloptr()`). If the status code of `nlopter::nlotpr()`
  is less than zero, indicating a status other than `"success"`,
  then the status code of this function will be set to 1.

- `Parameter Estimates`:

  The values of the free parameters. `Start` are the
  staring values before the optimization. `Final` are the values at
  convergence (the solution), and `Change` is `Final` - `Start`.

- `Bound before check`:

  The bound found before the checks presented above.
  This is printed because if the bound fails any of the checks, `NA` will
  be returned to prevent accidental use of the potentially invalid bound.
  If needed for diagnosis, the
  bound that fails the checks can be found here.

- `Status Code`:

  This code is either 0 or 1. If 0, it means that the bound
  passes
  all the checks presented above. If 1, it means that it fails at least one
  of the checks.

The `cibound`-class object has three elements:


```r
names(out_lb)
#> [1] "bound" "diag"  "call"
```

- `bound`:

  The bound found. `NA` if status code is not equal to 0.

- `diag`:

  Diagnostic information. It stores all the information presented in
  the printout described above, and more. If `verbose` is set to `TRUE`,
  of if the status code of `nloptr::nloptr()` (not of this function) is less
  than one, the original output of `nloptr::nloptr()` will also be stored
  for further examination.

- `call`: The original call.

We can verify the definitional validity of the bound by doing a likelihood
ratio test manually:


```r
mod_chk <-
"
m ~ a*x
y ~ b*m
ab := a*b
b == 0.3907302
"
fit_chk <- sem(model = mod_chk,
               data = dat)
lavTestLRT(fit, fit_chk)
#> 
#> Chi-Squared Difference Test
#> 
#>         Df    AIC    BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)  
#> fit      1 2590.9 2604.1 10.549                                        
#> fit_chk  2 2592.8 2602.7 14.390     3.8415 0.11919       1       0.05 .
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The *p*-value is .05 (1 - .95). Therefore, this bound,
0.3907302 is *correct by definition*.

This process can be repeated with `which = "ubound"` to
find the upper bound:


```r
out_ub <- ci_bound_wn_i(i = 2,
                        npar = 4,
                        sem_out = fit,
                        f_constr = fn_constraint,
                        which = "ubound",
                        verbose = TRUE,
                        ciperc = .95)
out_ub
#> Target Parameter:	y ~ m (group = 1, block = 1)
#> Position:		2
#> Which Bound:		Upper Bound
#> Method:			Wu-Neale-2012
#> Confidence Level:	0.95
#> Achieved Level:		0.950000000016757
#> Standardized:		No
#> Likelihood-Based Bound:	0.67944
#> Wald Bound:		0.67874
#> Point Estimate:		0.53508
#> Ratio to Wald Bound:	1.00482
#> 
#> -- Check --
#> Level achieved?		Yes (Difference: 1.6757e-11; Tolerance: 5e-04)
#> Solution admissible?	Yes
#> Direction valid?	Yes
#> 
#> -- Optimization Information --
#> Solver Status:		3
#> Convergence Message:	NLOPT_FTOL_REACHED: Optimization stopped because ftol_rel or ftol_abs (above) was reached.
#> Iterations:		3
#> Termination Conditions:
#> 	xtol_rel: 1e-05
#> 	ftol_rel: 1e-05
#> 	maxeval:  500
#> 
#> -- Parameter Estimates --
#>              a       b    m~~m     y~~y
#> Start  1.67613 0.67874 34.7103 40.88953
#> Final  1.67613 0.67944 34.7103 40.88955
#> Change 0.00000 0.00069  0.0000  0.00002
#> 
#> Bound before check:	0.67944
#> Status Code:		0
#> Call: ci_bound_wn_i(i = 2, npar = 4, sem_out = fit, f_constr = fn_constraint, 
#>     which = "ubound", ciperc = 0.95, verbose = TRUE)
mod_chk <-
"
m ~ a*x
y ~ b*m
ab := a*b
b == 0.679435
"
fit_chk <- sem(model = mod_chk,
               data = dat)
lavTestLRT(fit, fit_chk)
#> 
#> Chi-Squared Difference Test
#> 
#>         Df    AIC    BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)  
#> fit      1 2590.9 2604.1 10.549                                        
#> fit_chk  2 2592.8 2602.7 14.390     3.8415 0.11919       1       0.05 .
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The *p*-value is again .05 (1 - .95). Therefore, this bound,
0.679435 is correct by definition.

### Find the LBCI of a Function of Coefficients: The Indirect Effect

To find the bounds for a user-defined parameters, for example, the
indirect effect in the model, the steps are the same.


```r
parameterTable(fit)
#>   id lhs op rhs user block group free ustart exo label plabel  start    est
#> 1  1   m  ~   x    1     1     1    1     NA   0     a   .p1.  1.676  1.676
#> 2  2   y  ~   m    1     1     1    2     NA   0     b   .p2.  0.535  0.535
#> 3  3   m ~~   m    0     1     1    3     NA   0         .p3. 34.710 34.710
#> 4  4   y ~~   y    0     1     1    4     NA   0         .p4. 40.119 40.119
#> 5  5   x ~~   x    0     1     1    0     NA   1         .p5.  0.935  0.935
#> 6  6  ab := a*b    1     0     0    0     NA   0    ab         0.000  0.897
#>      se
#> 1 0.431
#> 2 0.073
#> 3 3.471
#> 4 4.012
#> 5 0.000
#> 6 0.261
```

The indirect effect, `ab`, is on the 6^th^ row. Therefore,
we set `i` to 6. All other arguments are the same as in the previous
example.


```r
ind_lb <- ci_bound_wn_i(i = 6,
                        npar = 4,
                        sem_out = fit,
                        f_constr = fn_constraint,
                        which = "lbound",
                        verbose = TRUE,
                        ciperc = .95)
```

This is the printout:


```r
ind_lb
#> Target Parameter:	ab := a*b (group = 0, block = 0)
#> Position:		6
#> Which Bound:		Lower Bound
#> Method:			Wu-Neale-2012
#> Confidence Level:	0.95
#> Achieved Level:		0.95000000158432
#> Standardized:		No
#> Likelihood-Based Bound:	0.42653
#> Wald Bound:		0.38491
#> Point Estimate:		0.89687
#> Ratio to Wald Bound:	0.9187
#> 
#> -- Check --
#> Level achieved?		Yes (Difference: 1.5843e-09; Tolerance: 5e-04)
#> Solution admissible?	Yes
#> Direction valid?	Yes
#> 
#> -- Optimization Information --
#> Solver Status:		4
#> Convergence Message:	NLOPT_XTOL_REACHED: Optimization stopped because xtol_rel or xtol_abs (above) was reached.
#> Iterations:		11
#> Termination Conditions:
#> 	xtol_rel: 1e-05
#> 	ftol_rel: 1e-05
#> 	maxeval:  500
#> 
#> -- Parameter Estimates --
#>              a        b     m~~m     y~~y
#> Start  0.77753  0.49504 35.46538 40.17887
#> Final  0.86224  0.49467 35.32975 40.17929
#> Change 0.08471 -0.00036 -0.13563  0.00042
#> 
#> Bound before check:	0.42653
#> Status Code:		0
#> Call: ci_bound_wn_i(i = 6, npar = 4, sem_out = fit, f_constr = fn_constraint, 
#>     which = "lbound", ciperc = 0.95, verbose = TRUE)
```

This bound passes all the checks. We can verify the
bound using the likelihood ratio test:


```r
mod_chk <-
"
m ~ a*x
y ~ b*m
ab := a*b
ab ==  0.4265275
"
fit_chk <- sem(model = mod_chk,
               data = dat)
lavTestLRT(fit, fit_chk)
#> 
#> Chi-Squared Difference Test
#> 
#>         Df    AIC    BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)  
#> fit      1 2590.9 2604.1 10.549                                        
#> fit_chk  2 2592.8 2602.7 14.390     3.8415 0.11919       1       0.05 .
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The *p*-value is .05 (1 - .95). Therefore, this bound,
0.4265275 is correct by definition.

# References