## ----setup, output=FALSE------------------------------------------------------ library(serosv) library(dplyr) library(magrittr) ## ----warning=FALSE------------------------------------------------------------ data <- parvob19_fi_1997_1998[order(parvob19_fi_1997_1998$age), ] %>% rename(status = seropositive) aggregated <- transform_data(data$age, data$status, heterogeneity_col = "age") # fit with linelisting data model1 <- polynomial_model(data, type = "Muench") # fit with aggregated data model2 <- polynomial_model(aggregated, type = "Muench") # fit with aggregated data model3 <- polynomial_model(aggregated, type = "Griffith") # fit with gam model4 <- penalized_spline_model(aggregated) ## ----------------------------------------------------------------------------- # provide models with name compare_models(muench_linelist = model1, muench_aggregated = model2, griffith = model3, penalized_spline = model4) # provide models without name compare_models(model1, model2, model3, model4) # user can provide arbitrary number of models compare_models(model3, model4)